
IAA-AAS-DyCoSS2 -14-11-09

ORBITAL DYNAMICS FOR A NON-PERFECTLY REFLECTING
SOLAR SAIL CLOSE TO AN ASTEROID

Ariadna Farrés∗, Àngel Jorba†, and Josep-Maria Mondelo‡

In this paper we focus on a mission scenario of a solar sail close to an asteroid. We
consider the Augmented Hill Three Body problem as a model, where the asteroid
is considered as a point mass and both the effect of solar tides and the solar radia-
tion pressure due to the solar sail are included. We will give a complete description
of the most relevant dynamics properties of the system. We will compute families
of periodic and quasi-periodic orbits for different fixed sail orientations.

INTRODUCTION

In the past two decades there has been a tremendous activity in the study of small bodies (asteroids
and comets) mainly due to their unique nature as remnants of the early stages of the Solar System
formation and also as a detailed record of its evolution up to present time. More recently, these
objects have also been recognised as both a possible threat for the Earth (potential collisions) and
stepping stones for human exploration beyond low-Earth orbits (manned mission to asteroids for
asteroid mining).

On the other hand, solar sailing is considered a cheap way to travel around space, and could
enable multi-rendezvous mission towards different target asteroids.1 Moreover, due to their small
gravitational field, solar radiation pressure (SRP) plays an important role on the dynamics around
asteroids.2 Hence, the systematic use of SRP to propel a satellite via specialised reflecting areas,
such as solar sails, can give rise to new and interesting mission concepts.

When we study the dynamics of a satellite close to an asteroid there are three effects that must
be considered: its gravitational field, solar tides and solar radiation pressure (SRP). The first effect
accounts for the shape and spin states of the asteroid, and is relevant within a few radii from its
surface, in what is known as the gravity regime. Far from the gravity regime, considering the
asteroid as a point mass provides a good approximation. Here effects like the SRP and the Sun’s
gravity are more relevant and must be taken into account.

In this paper we will focus on a mission scenario of a solar sail close to Ceres. We will consider
an imperfect flat solar sail, that accounts for both the reflectivity and absorption of the sail’s ma-
terial. We will use the Augmented Hill 3-body problem as a dynamical model, where the asteroid
is considered as a point mass and the effect of SRP due to the solar sail is added. We will give a
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complete description of the most relevant dynamical properties of the system (i.e. fixed points, pe-
riodic and quasi-periodic orbits, . . . ). Finally we will discuss their possible applications to asteroid
mission analysis.

THE AH3BP MODEL FOR A NON-PERFECTLY REFLECTING SOLAR SAIL

To capture the dynamics of a solar sail around an asteroid we use the Augmented Hill 3-Body
problem (AH3BP), which models the motion of two small masses (asteroid and spacecraft) that
interact due to their mutual gravitational attraction and is perturbed by a distant large body (the
Sun). The AH3BP also takes into account the effect of SRP due to the solar sail.3, 4 As the Sun–
sail distance is large compared to the asteroid–sail distance, the effect of the Sun is included as a
uniform gravity field and a uniform SRP, both in the horizontal direction.

We consider a rotating reference frame centred on the small body, defined such that: the x di-
rection points from the Sun to the asteroid; the z direction is aligned with the Sun–asteroid angular
velocity; and the y direction completes a positive coordinate system. We normalise units in such a
way that the unit of distance, L, is (µsb/µsun)1/3R, and the unit of time, T , is 1/ω, where µsun is
the gravitational parameter of the Sun (≈ 1.327 × 1011km3/s2), µsb is the gravitational parameter
of the smaller body, R is the mean distance between the Sun and the asteroid, and ω =

√
µsun/R3

is the angular velocity. Using these normalised units, the equations of motion for the AH3BP for a
solar sail5, 2 are:

Ẍ − 2Ẏ =
∂Ω

∂X
+ aX , Ÿ + 2Ẋ =

∂Ω

∂Y
+ aY , Z̈ =

∂Ω

∂Z
+ aZ . (1)

with
Ω(X,Y, Z) =

1

r
+

1

2
(3X2 − Z2),

(X,Y, Z) denotes the position of the solar sail in the rotating frame, r =
√
X2 + Y 2 + Z2 is

the distance between the solar sail and the centre of the asteroid, and asail = (aX , aY , aZ) is the
acceleration given by the solar sail.

To model the acceleration of the solar sail we use a simplified model for a non-perfectly reflecting
(SNPR) solar sail,6 which only takes into account absorption and reflection of the sail material. If
we denote by a the absorption coefficient and by ρ the reflectivity coefficient, we have a + ρ = 1.
The force due to absorption and reflection is given by Fa = PA〈rs,n〉rs and Fr = 2PA〈rs,n〉2n
respectively. In the previous expressions, P = P0(R0/R)2 is the SRP magnitude at a distance R
from the Sun (P0 = 4.563µN/m2, the SRP magnitude at R0 = 1AU), A is the area of the solar
sail, rs is the direction of SRP (rs = (1, 0, 0) in the rotating reference frame) and n is the normal
direction to the surface of the sail. Hence, the acceleration for the SNPR solar sail is given by:

asail =
2PA

m
〈rs,n〉

(
ρ〈rs,n〉n +

1

2
(1− ρ)rs

)
. (2)

Notice that, ρ = 1 corresponds to a perfectly reflecting solar sail, and ρ = 0 to a perfect solar
array where the absorption of the solar panels is the only effect. According to Dachwald et al.,6 a
solar sail with a highly reflective aluminium-coated side has an estimated value of ρ ≈ 0.88.

We will parametrise the normal direction to the surface of the sail using two angles α, δ, represent-
ing the horizontal and vertical displacement with respect to rs, hence n = (cosα cos δ, sinα cos δ, sin δ).
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As the sail cannot point towards the Sun, we have that α, δ ∈ [−π/2, π/2]. Finally, the efficiency
of a solar sail is measured in terms of β = 2PA/m, also know as the sail lightness number. One
can check that, with these definitions, the acceleration for the solar sail in Eq. (2) is written as

aX = β̄(ρ cos3 α cos3 δ + 0.5(1− ρ) cosα cos δ),

aY = β̄(ρ cos2 α cos3 δ sinα),

aZ = β̄(ρ cos2 α cos2 δ sin δ),

(3)

where β̄ = β(µsbω
4)−1/3 is the sail lightness number in normalised units.5

Finally, we must mention that the system given by Equation 1 admits an integral of motion, also
known as the Jacobi constant,

Jc = Ẋ2 + Ẏ 2 + Ż2 − 2Ω(X,Y, Z). (4)

Some comments on the normalised units

To derive the equations of motion for the AH3BP, we have considered a set of normalised units.
We recall that the unit of length is defined as L = (µsb/µsun)1/3R, and the unit of time is defined
as T = 1/ω. Notice that they both depend on the target asteroid for our mission. In Table 1
we summarise the physical data for 4 different asteroids∗, as well as the associated normalised
units of distance and time of the AH3BP. We also include for each asteroid its orbital period, the
sidereal rotational period and its maximum radius both in km and normalised units. We will use
the maximum radii to provide an estimate of the gravity regime (which is around 3 to 4 times the
asteroids’ radii) for each asteroid. Notice that, for all the asteroids considered, the radius distance
varies between 0.001 and 0.005.

Table 1. Relevant parameters for different asteroids

Asteroid µsb (km3/s2) R (AU) UD (km) UT (day) Rot. Period RADII (km/UD)

Eros 4.463× 10−4 1.45 3265.4 102.2 0.2194 days 8.42 (2.5× 10−3)
Vesta 17.8 2.36 180782 210 0.2226 days 265 (1.4× 10−3)
Ceres 63.2 2.767 321966.593 265.95 0.3781 days 487.3 (1.51× 10−3)
Itokawa 2.1× 10−9 1.32 49.57 88.15 0.5055 days 0.165 (3.3× 10−3)

The normalised sail lightness number is β̄ = β(µsbω
4)−1/3. We recall that β = 2PA/m,

ω =
√
µsun/R3 and P = P0(R0/R)2. Taking this into account, we can rewrite β̄ as

β̄ =
2P0R

2
0(A/m)

µ
2/3
sunµ

1/3
sb

= K1(A/m)µ
−1/3
sb , (5)

where K1 ≈ 7.8502 if A is given in m2 and m in kg.7 Hence, the value of β̄ depends on both:
σ = (A/m), the area-to-mass ratio of the satellite, and µsb, the gravitational parameter of the small
body. We could have the same β̄ for two completely different missions scenarios. Notice that β̄
is inversely proportional to µ1/3sb . Hence, for a fixed area-to-mass ratio, the smaller the asteroid the
larger the effect of SRP will be.

In Figure 1 we show the contour levels of the normalised sail lightness number β̄ as a function of
σ and µsb. As we can see, for small asteroids (µsb ≈ 10−9) and an area-to-mass ratio of a regular
∗The physical parameters have been taken from http://ssd.jpl.nasa.gov/sbdb.cgi
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Figure 1. Contours of β̄ as a function of (A/m), area-to-mass ratio, and µsb, the
gravitational parameter of the asteroid.

spacecraft (σ ≈ 0.01), β̄ takes values between 50 and 100, whereas, for larger asteroids such as
Ceres and Vesta (µsb ≥ 10) and a regular spacecraft this effect is very small (β̄ ≤ 0.03).

In Table 2 we summarise the values of β̄ for the 4 asteroids that appear in Table 1 and dif-
ferent area-to-mass ratios. As examples, we have taken the estimated area-to-mass ratio from
Ikaros (σ ≈ 0.63m2/kg), NanoSail-D2 (σ ≈ 2.5m2/kg), Hayabussa (σ ≈ 0.032m2/kg) and Dawn
(σ ≈ 0.17m2/kg). Although Hayabussa and Dawn are not solar sails, they have very large solar
panels which could be considered for orbital control.2 In Table 2 we see again how around a very
small asteroid like Itokawa SRP is very important, even for spacecrafts like Hayabussa and Dawn.

Table 2. Normalised values for β̄ for different mission configurations

Ikaros NanoSail-D2 Hayabussa Dawn
(≈ 0.63m2/kg) (≈ 2.5m2/kg) (≈ 0.032m2/kg) (≈ 0.17m2/kg)

Eros 64.71 256.809 3.287 17.463
Vesta 1.894 7.51647 0.0962 0.511
Ceres 1.22 4.92 0.063 0.33
Itokawa 3862.02 15325.48 196.166 1042.13

In this paper we will focus on the particular case of a solar sail with similar characteristics as
Nano-Sail and considering Ceres as target asteroid. Hence, we will consider β̄ = 5 and take a
conservative value for the reflectivity coefficient, ρ = 0.85. We will describe the natural dynam-
ics of the system, finding fixed points, periodic and quasi-periodic orbits for different fixed sail
orientations.
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EQUILIBRIUM POINTS

It is well know that thanks to the effect of a solar sail we can “artificially” displace the classical
equilibrium points. In this section we will briefly describe the families of equilibrium points that
appear in the AH3BP for β̄ ∈ [1, 7] and ρ = 0.85. For further details see.3, 4, 8

We recall that when we neglect the effect of the solar sail (β̄ = 0) the system has two equilibrium
points L1, L2 symmetrically located around the origin, with coordinates (±3−1/3, 0, 0). When we
include the SRP (β̄ 6= 0) but keep the sail perpendicular to the Sun–line (α = δ = 0), the position
of L1 and L2 move along the x-axis towards the Sun as we increase the value of β̄, having for β̄ = 7
SL1 = (−2.3916, 0, 0) and SL2 = (0.352, 0, 0). If, for a fixed β̄, we change the sail orientation
we will displace the position of the equilibrium points. Changes in α imply shifting the equilibrium
point to one side or the other of the Sun–asteroid line, while changes in δ imply displacing the
equilibrium point above or below the ecliptic plane.
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Figure 2. Family of equilibrium points for β̄ = 1, 3, 5, 7, α ∈ [−π/2, π/2] and δ = 0.
All the equilibria lie on the orbital plane Z = 0. Left: Points related to L1, Right:
Points related to L2. The arrows represent the normal direction to the surface of the
sail at each equilibrium point.
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Figure 3. Family of equilibrium points for β̄ = 1, 3, 5, 7, α = 0 and δ ∈ [−π/2, π/2].
All the equilibria lay on the plane Y = 0. The arrows represent the normal direction
to the surface of the sail at each equilibrium point.

In Figures 2 and 3 we show the position of the families of equilibria related to L1 (left) and L2

(right) for β̄ = 1, 3, 5 and 7. In Figure 2, the equilibria correspond to α 6= 0, δ = 0 and they all
lie on the Z = 0 plane, whereas in Figure 3 they correspond to α = 0, δ 6= 0, i.e. they all on the
Y = 0 plane. In both figures, the arrows represent, for each equilibrium point, the normal direction
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to the surface of the solar sail. Notice that close to L1, the points where the solar sail is almost
perpendicular to the SRP are far from the asteroid, while for the equilibria close to L2 those are the
ones closer to the asteroid. Moreover, we know that the sail looses most of its efficiency if we tilt
it more than 45◦, which makes us discard the equilibria close to L1 and L2 where the sail is almost
edged off.

If we look at the stability of these equilibria we see that all the equilibrium points on the L2 fam-
ily are linearly unstable and their linear dynamics is centre×centre×saddle. On the other hand, al-
though most of the equilibria on the L1 family are of the same type, we also find some equilibria that
are linearly stable on the ecliptic plane, with a linear dynamics of the type centre×centre×centre.
These last type of equilibria appear for large β̄ on the Z = 0 plane and far from the Sun-asteroid
line.

In the case of a mission application where a solar sail is placed on an equilibrium point in order
to monitor an asteroid, we are interested on points relatively close to the asteroid and on the day
side of the asteroid. This brings our first dilemma: if we consider the equilibria that are closer to
the surface of the asteroid these belong to the L2 family, but they are on its dark side. On the other
hand, if we consider the equilibria that are on the asteroid’s day side, they belong to the L1 family
but are far away from the asteroid. For this reason, from now on, we will focus on the dynamics
around the L2 family of equilibria.

PERIODIC MOTION

As we have mentioned in the previous section, for most of the equilibrium points the linear
dynamics is centre×centre×saddle. This means that under generic non-resonant conditions, two
families of periodic orbits emanate from each fixed point (Lyapunov’s Centre Theorem9). Each
family is related to one of the two pairs of complex eigenvalues (±iω1,±iω2) and the period of
the orbits tends to 2π/ωi when we approach the equilibrium point.

In this section we will describe these families of periodic orbits for β̄ = 5, ρ = 0.85 and we will
focus the region close to SL2 (i.e. the displaced equilibrium point for (α0, δ0) = (0, 0)). As a repre-
sentative set of angles, we have chosen (α0, δ0) = (0.1, 0), (0.25, 0), (0.5, 0), (0, 0.1), (0, 0.25) and
(0, 0.5) (in radians). But here we only show the results for (0, 0), (0.25, 0) and (0, 0.25), as we ob-
serve similar results for each set of angle with α 6= 0, δ 6= 0 . For each fixed sail orientation we have
one displaced equilibrium point close to SL2, where the linear dynamics is centre×centre×saddle
(i.e. has {±λ,±iω1,±iω2} as eigenvalues). Each complex eigenvalue is related to one of the two
families of periodic orbits. The first one (±iω1) will be related to the family of orbits with less
out-of-plane displacement (Planar family) and the second one (±iω1) to the family with maximum
out-of-plane displacement (Vertical family).

To compute the families of periodic orbits for the different sail orientations, we need to take
appropriate Poincaré sections to ensure the transversality of the flow. If (x0, y0, z0) are the coordi-
nates of the equilibrium point for (α0, δ0), we consider as Poincaré sections Γ1 = {x0Y − y0X =
0, x0Ẏ − y0Ẋ > 0}. For each family of periodic orbits we use the linear approximation of the
flow around (x0, y0, z0) to compute the first orbit in the family. We use a continuation method to
compute the rest of the orbits in the family.10

In Figure 4 we have the continuation diagram for the two families of periodic orbits given by
(α = 0, δ = 0) (left), (α = 0.25, δ = 0) (middle) and (α = 0, δ = 0.25) (right). Each point on
the plot corresponds to the X and Z components of a periodic orbit on the Poincaré section Γ1. We
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have assigned a colour to each periodic orbit according to their linear normal dynamics: blue stands
for centre×saddle, red stands for saddle×saddle and green stands for centre×centre.
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Figure 4. For β̄ = 5, ρ = 0.85, (α = 0, δ = 0) left, (α = 0.25, δ = 0) middle,
(α = 0, δ = 0.25) right. Continuation diagram of the families of periodic orbits on
the Poincaré section Γ1, x0 vs z0.

As we can see on the left hand side of Figure 4, for α = 0, δ = 0 we start with a planar family and
a vertical family of periodic orbits, both unstable (centre×saddle). The vertical family of periodic
orbits starts to gain Z amplitude as we move along it, and at some point the Z amplitude starts to
decrease. On the other hand, the planar family is always contained in the orbital plane (Z = 0). At
some point, the stability of planar orbits changes to saddle×saddle. There two families of Halo-type
orbits are born. The Halo orbits that appear are also unstable centre×saddle. As we move along the
family, the orbits get closer to the asteroid (x0 → 0), and at some point the orbits become stable
(centre×centre).

If we take a sail orientation with α 6= 0, δ = 0 (Figure 4 middle), we find the same orbit distri-
bution. We have a family of planar and vertical periodic orbits, and at some point the planar family
changes its stability and two Halo orbits appear. The main difference between the two diagrams
relies on the stability of the orbits. As we can see, both the planar and vertical families of peri-
odic orbits change their stability when reaching the end of the family. On the other hand, when we
take sail orientations with α = 0, δ 6= 0, we have a more drastic change on the orbit distribution
(Figure 4 right). As we can see, there are two families of periodic orbits that are born from the
fixed points. The vertical family has a similar behaviour, it starts gaining Z amplitude as we move
along the family. On the other hand, the planar family has some vertical displacement, these orbits
look more likely to be Halo-type orbits. As we move along the family these orbits get close to the
asteroid (x0 → 0) and at some point the orbits turn stable. The “planar” type orbits and the other
“Halo” type orbits have not disappeared. They are still there but they are related in different way.
The same phenomena is found in the RTBP with solar sail.11

In Figures 5, 6 and 7 we have the X,Y, Z projections of the Planar Lyapunov, Vertical Lyapunov
and Halo families of periodic orbits respectively. We can see how taking sail orientations with α 6= 0
does not vary the shape of the orbits, it just displaces them with respect to the Sun–asteroid line.
On the other hand, taking sail orientations with δ 6= 0 makes the trajectory shift above the ecliptic
plane. Finally notice that for δ 6= 0 there are some Halo type orbits that do not persist (Figure 7).

Another way to classify the periodic orbits is by means of their orbital period τ or the Jacobi
constant Jc, that gives us an idea of at what energy level the orbits exist. At the top of Figure 8 we
have shown the period τ vs Jc for each of the families of periodic orbits. As in Figure 4, we have
associated a colour to each orbit according to its stability. As we can see, for the planar and vertical
families of orbits, as we move along the family, the period and energy increase. On the other hand,
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Figure 5. Families of Planar Lyapunov type orbits for β = 5, ρ = 0.85. From right to
left: (α = 0, δ = 0), (α = 0.25, δ = 0) and (α = 0, δ = 0.25).
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Figure 7. Families of Halo type orbits for β = 5, ρ = 0.85. From right to left:
(α = 0, δ = 0), (α = 0.25, δ = 0) and (α = 0, δ = 0.25).

for the Halo-type orbits, they both start to grow, but at some point they decrease drastically, having
periods that tend to zero as we get closer to the asteroid, and very low energy values.

On the bottom of Figure 8 we show the period of the orbit vs the stability parameters s1, s2, which
allows us to study the stability of the orbit and have estimates of the instability rate.12 We recall that
the spectrum of the state transition matrix of the a periodic orbit, M(T ), is {1, 1, λ1, λ−11 , λ2, λ

−1
2 },

and we we define the stability parameters as si = λi + λ−1i . Notice that if |si| > 2 we have an
unstable direction and if |si| < 2 we have a stable one. In these plots, the colour correspond to the
type of orbit, blue for the Vertical Lyapunov type orbits, red for the Planar Lyapunov type orbits and
green for the Halo type orbits. Notice how, all three type of orbits start being very unstable, with
s1 ≥ 1000 and this decreases as the orbits get closer to the asteroid.

QUASI-PERIODIC MOTION

The linear dynamics of the equilibrium point is of the type centre×centre×saddle. Due to the
saddle effect, almost all trajectories starting near the equilibrium point escape after a short time. On
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(α = 0, δ = 0.25) right. Continuation diagrams of the families of periodic orbits: top
x0 vs τ the orbital period, middle x0 vs Jc jacobi constant, bottom x0 vs (s1, s2) the
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the other hand, the two linear oscillations give rise, in the full system, to two families of periodic
orbits (the so-called Lyapunov periodic orbits), described in the previous section, plus a family of
quasi-periodic motions (sometimes known as Lissajous orbits) with two basic frequencies.13

In this section we will describe the quasi-periodic motion for different sets of sail orientations.
We will do this by means of two different techniques: reduction to the centre manifold and numer-
ical computation of invariant tori. The centre manifold contains all the periodic and quasi-periodic
motions near the equilibrium point and it is very useful to visualise the whole dynamics near the
point. Reduction to the centre manifold is a semianalytical procedure and, as such, works in the
neighborhood of the fixed point in which the expansions give accurate approximations. The nu-
merical computation of families of quasi-periodic motions is a natural generalisation that allows to
reach any energy, at the cost of a less global description.

Centre manifold near equilibria

The centre manifold at the equilibrium point is an invariant manifold that contains these periodic
and quasi-periodic motions. In this case, this is a 4D manifold with a normally hyperbolic character
due to the saddle part.

To visualise and study all the non-escaping orbits near this point we use the so-called reduction
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to the centre manifold. The idea of this process is as follows. First, the origin of coordinates is
translated to the equilibrium point. Then, a linear change of variables is used to uncouple the linear
hyperbolic part from the elliptic one. After this transformation, the equations should look as

u̇ = Au+O2(u, v),

v̇ = Bv +O2(u, v),

where A is an elliptic 4× 4 matrix and B a hyperbolic 2× 2 matrix. The idea is to go on with this
uncoupling up to high orders in u and v. Hence, computing the Taylor expansion of the vector field
at the equilibrium point, we obtain an expression like

u̇ = Au+ f(u, v),

v̇ = Bv + g(u, v),

where f and g are functions whose Taylor expansion starts with terms of second degree. Then,
by means of a standard normal form scheme, we can apply near-identity changes of variables to
suppress the monomials of the expansion that couple the elliptic directions to the hyperbolic ones,
up to a given degree n. The resulting differential equation has the form

u̇ = Au+ fn(u, v) + r
(1)
n+1(u, v),

v̇ = Bv + gn(u, v) + r
(2)
n+1(u, v),

where A is an elliptic 4× 4 matrix, B a hyperbolic 2× 2 matrix, and fn and gn are polynomials of
degree n such that gn(u, 0) = 0. In other words, all the monomials of g that only depend on u have
been suppressed. Note that, if we are close to the equilibrium point, the remainders r(1,2)n+1 are very
small and, neglecting them, the manifold v = 0 becomes invariant. The dynamics on this manifold
is described by the differential equation

u̇ = Au+ fn(u, 0),

and note that the hyperbolic behaviour has been removed. In these coordinates, v = 0 is the so-
called centre manifold, and contains the periodic and quasi-periodic motions near the equilibrium
point. Note that this is a 4D Hamiltonian system (i.e., with 2 degrees of freedom) whose dynamics
can be easily visualised by fixing an energy level and plotting a 2D Poincaré section. All the
trajectories displayed in this section are unstable in the full system due to the hyperbolic part that
has been removed to compute the centre manifold.

It is not difficult to see that Equation (1) corresponds to a Hamiltonian system: defining momenta
as usual, PX = Ẋ − Y , PY = Ẏ +X and PZ = Ż, the Hamiltonian function is given by

H =
1

2
(P 2

X + P 2
Y + P 2

Z) + Y PX −XPY −
1

2
(2X2 − Y 2 − Z2)− 1

r
− aXX − aY Y − aZZ,

where the values aX , aY , aZ are given in (3) and r2 = X2 +Y 2 +Z2. Moreover, it is easy to check
that H = 1

2JC .

Here we will take advantage of the Hamiltonian structure of the system, this is, all the transfor-
mations will be done on the Hamiltonian function instead of the differential equations. This means
that, on one hand, the transformations have to be chosen canonical but, on the other hand, they need
to be applied just to a single function, the Hamiltonian.14, 15, 16
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Once the normalising process is finished (up to degree N ), the remainder is neglected and the
restriction of the Hamiltonian to the centre manifold takes the form

Hcm = H2(q, p) +HN (q, p),

where q = (qh, qv), p = (ph, pv), H2 contains the second degree terms of the Hamiltonian and HN

contains monomials of degree between 3 and N . The second degree terms are of the form

H2 =
1

2
ωh(q2h + p2h) +

1

2
ωv(q

2
v + p2v),

The frequencies ωh,v correspond to linear oscillations around the point related to the horizontal and
vertical Lyapunov orbits respectively. In all the cases studied here the frequencies ωh,v are positive,
which implies that, near the equilibrium point, the surfaces of level Hcm = h are bounded (they
look like deformed spheres). This also means that there are no trajectories near the equilibrium
point with negative energy∗and that, fixing a small energy level h > 0, the set of orbits with this
energy must intersect the Poincaré section close to the origin.

The main limitation of this procedure is that we cannot describe the dynamics far from the equi-
librium point. The reason is that it is computed as a power series at the equilibrium point so it
is convergent up to the first singularity. The initial radius of convergence is the distance from the
equilibrium point to the asteroid. This radius can be reduced by the normalising transformations
but, in this case, as the normalising process does not have the so-called small divisors, the reduction
of the radius of converge is almost unnoticeable.15 This means that, in our case, the description is
valid on a ball of centre the equilibrium point and radius the distance from this point to the asteroid.

To display the dynamics we have applied the following procedure. As before, let us call (qh, ph)
the variables in the normalised coordinates related to the horizontal oscillations, and consider the
Poincaré section qh = 0 (in other words, we are “slicing” the vertical motions).

Let us consider the case α = δ = 0 and select the energy level Hcm = 0.4 (corresponding to
H = −4.519072 in synodical coordinates). Take qh = 0 as Poicaré section and, for a mesh of
couples (qv, pv) we compute the (only) positive value of ph such that Hcm(0, ph, qv, pv) = 0.4 (if
this value does not exist, it means that there are no orbits for this energy level crossing the section
qh = 0). Plotting the successive intersections of these orbits with qh = 0 we obtain Figure 9.
The point at the centre corresponds to a vertical periodic orbit (in this case, this is the vertical
Lyapunov orbit corresponding to this energy level) and the curves around it correspond to quasi-
periodic motions (Lissajous orbits). The outer boundary of this disk is given by the planar Lyapunov
orbit.

Increasing the energy level up to Hcm = 0.8 (H = −4.450858 in synodical coordinates) we
obtain Figure 10. Here one can see the two Halo orbits, surrounded by quasi-periodic motions
(sometimes called quasi-Halos). In summary, for this sail orientation (α = δ = 0), the phase space
near the equilibrium point looks very similar to the one of the classical RTBP.

Now let us consider the sail orientation to α = 0.1 and δ = 0. Near the new equilibrium point, the
dynamics is very similar to the previous case. Increasing the energy level, the Halo orbits appear.
Figure 11 shows the Poincaré section for the energy levelHcm = 0.8 (H = −4.429012 in synodical
coordinates). We recall that, as we saw in the previous section, here we have a similar dynamics as
∗This means that the energy of periodic (Lyapunov) and quasi-periodic (Lissajous) orbits near the equilibrium point

must be larger than the energy at the equilibrium point.
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Figure 9. Centre manifold at the L2 point for α = δ = 0 and Hcm = 0.4. Left:
Poincaré section in normalised coordinates (qv, pv). Right: The left plot in synodical
coordinates.

Figure 10. As Figure 9, but for Hcm = 0.8.

Figure 11. Centre manifold at the point L2 for α = 0.1, δ = 0 and Hcm = 0.8. Left:
Poincaré section in normalised coordinates (qv, pv). Right: The left plot in synodical
coordinates.
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for α = δ = 0, the main difference being that the orbits are shifted in the plane as it can also be
seen here.

Finally, let us consider the sail orientation given by α = 0 and δ = 0.1. As in the previous cases,
the dynamics for values of Hcm close to 0 is very similar to the one shown in Figure 9. For larger
values of the energy, some bifurcations appear. For instance, Figure 12 shows the Poincaré section
for Hcm = 2.3 (H = −4.170575 in synodical coordinates). In the left side, there is an small island
(magnified in the right plot) that corresponds to one Halo orbit. If we move more to the right, we see
a second elliptic orbit that corresponds to the vertical Lyapunov orbit and, moving more to the right,
we see a couple of elliptic/hyperbolic orbits. The elliptic one is a Halo orbit, and the hyperbolic one
is the planar Lyapunov orbit from which this Halo has branched off (compare with Figure 4 right).
We have not included the section in synodical coordinates corresponding to the plots of Figure 12,
since it is very similar to the previous ones.

 0

 0.05

 0.1

 0.15

 0.2

-1.08 -1.07 -1.06 -1.05 -1.04 -1.03 -1.02 -1.01 -1

Figure 12. Centre manifold at the point L2 for α = 0, δ = 0.1 and Hcm = 2.3. Left:
Poincaré section in normalised coordinates. Right: Magnification of the left plot to
show the island corresponding to a Halo orbit.

Invariant Tori

The Poincaré sections obtained in the previous sections are useful to visualise the existing quasi-
periodic solutions near L2. In this section we focus on the numerical computation of some of
these quasi-periodic orbits. As it was mentioned previously, proceeding in this way we will be able
to continue these families up to large distances from the equilibrium point, beyond the radius of
convergence of the Taylor expansions used for the centre manifold.

The method used here is based on finding a curve inside the torus to be computed, invari-
ant through the time–T flow, T being one of the periods of the torus, and approximated as a
Fourier series.17 Namely, denote the time–t flow (state transition map) as φt(x), where x =
(X,Y, Z, PX , PY , PZ) is a state of the AH3BP in Hamiltonian form. By an invariant torus we
understand a geometrical object parameterised by a function ψ(θ1, θ2) that is 2π–periodic in θ1, θ2
and satisfies

φt
(
ψ(θ1, θ2)

)
= ψ(θ1 + tω1, θ2 + tω2),

where ω1, ω2 are the frequencies of the torus, so the corresponding periods are 2π/ω1, 2π/ω2. In
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order to find such a torus, we look for a parametrisation of a closed curve

ϕ(θ) = A0 +

Nf∑
k=0

(
Ak cos(kθ) +Bk sin(kθ)

)
satisfying the invariance equation

φT
(
ϕ(θ)

)
= ϕ(θ + ρ) (6)

for θ ∈ [0, 2π]. Here ρ is called the rotation number. From the previous equation, a calculation
shows that the function

ψ(θ1, θ2) = φTθ2/(2π)

(
ϕ
(
θ1 −

θ2
2π
ρ
))

is 2π–periodic in θ1, θ2, and satisfies

φt
(
ψ(θ1, θ2)

)
= ψ

(
θ1 + t(ρ/T ), θ2 + t(2π/T )

)
,

that is, the torus given by ψ(θ1, θ2) is invariant with frequencies ω1 = ρ/T , ω2 = 2π/T .

In order to be solved numerically, equation (6) is discretised by taking values of θ equally spaced
in [0, 2π], as many as Fourier coefficients need to be determined (i.e. 1 + 2Nf ). This gives rise to a
non–linear system of equations

φT
(
ϕ(θj)

)
= ϕ(θj + ρ), (7)

with θj = j2π/(1 + 2Nf ), that is solved via Newton’s method. In this system, the unknowns are
the Fourier coefficients Ak, Bk as well as ρ, T . The families of tori we look for are two–parametric.
This can be inferred from the Poincaré section plots of the centre manifold of the previous section,
in which we can see a one–parametric family of tori at each energy level. We could use ρ, T as
parameters, but the computations of the centre manifold suggest that the value of the Hamiltonian,
or energy, is a better parameter. We will then add an energy equation to (7) and solve

H(ϕ(0)) = h,

φT
(
ϕ(θj)

)
= ϕ(θj + ρ), j = 0, . . . , 2Nf ,

(8)

for h, T, ρ,Ak, Bk. This system can be used to follow families of tori using standard continuation
procedures.18 Since these procedures need the families to be 1–parametric, one of the parameters
h, ρ needs to be fixed. There are some additional technical details, such as how to start continuations
from central parts of periodic orbits.19

For each energy level in which there is a periodic orbit with central part, meaning that one of its
stability parameters si is such that |si| < 2, a one–parametric family of invariant tori can be grown
from the periodic orbit. Since this happens in a range of energy levels, families of invariant tori are
2–parametric. The families of Lissajous orbits shown in Figure 9 can be computed numerically as
described before, either starting at the vertical Lyapunov orbit and ending at the planar one or vice-
versa. For higher energy levels (as in Figure 10), in order to get Lissajous tori, we can only start
from the vertical Lyapunov orbit, since the planar one has no central part (its stability parameters
satisfy |s1|, |s2| > 2). Quasi-Halo tori have to be computed separately, starting from each of the
two Halo orbits of the energy level.

For shortness, in this paper we only show invariant tori associated to the Lissajous family, and for
α = δ = 0 (the tori with α 6= 0 or δ 6= 0 look similar but displaced, in the same way periodic orbits
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Figure 13. Several invariant tori (in green) around a vertical Lyapunov orbit (in red)
for H = −4.00280, α = 0, δ = 0.
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Figure 14. An invariant torus (in green) around the vertical Lyapunov orbit of the
same energy (in red), for α = 0, δ = 0 and the energies indicated.
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do). In order to compute these tori, we always start from vertical Lyapunov periodic orbits, since
this family is the one that reaches higher energy levels with a center part, see Figure 8. Figure 13
shows, for α = δ = 0, three invariant tori corresponding to the energy level H = −4.00280, close
but larger than the ones of the center manifold plots (Figures 9 to 12). The tori in Figure 13 are
obtained from the vertical Lyapunov orbit corresponding to this energy level and by continuation
of the system of equations (8) with respect to the rotation number ρ. From left to right, they are
shown as produced by the continuation procedure. It can be seen how, as they gain Y amplitude,
they contain orbits with ground tracks that exhibit lower latitudes. All three tori stay in the dark side
of the asteroid, but, as vertical orbits do, for higher energies (Figure 14), their trajectories reach the
Sun side, again with ground tracks with lower latitudes than vertical Lyapunov orbits. On the other
hand, Figure 14 shows a torus for each of the three energy levels specified. These energy levels
have been chosen in order to cover about half the family of vertical Lyapunov orbits (compare with
Figure 6). Finally, let us add that all these invariant tori are unstable. A detailed study of their
normal eigenvalues20 is work in progress.

SOME ORBIT PROPERTIES RELEVANT IN A CERES MISSION SCENARIO

In the mission scenario of a solar sail close to Ceres, there are several restrictions that must be
taken into account. For instance: orbiting close to the asteroid to allow more detailed scientific ob-
servations; keeping the solar sail almost perpendicular to the SRP to magnify the sail’s performance;
and being able to observe the day side of the asteroid.

In order to be close to Ceres, we must consider the equilibrium points and periodic orbits around
the displaced L2 equilibria. The main drawback of this region is that most of the periodic motion
remains in the shadow side of the asteroid, which could compromise an observational mission.
Nevertheless, we have found that some of the periodic orbits on the Planar and Vertical families
spend part of their period on the day side of the asteroid, and could be interesting for an observational
mission. Similar behaviour has been observed in quasi-terminator orbits7 and we are working on
relating these orbits to our work.

In Figures 15, 16 and 17 we summarise the % of the orbital period that the orbit spends in the day
side and the maximum and minimum distance to the asteroid for each of the families of periodic
orbits for the case: (α = 0, δ = 0), (α = 0.25, δ = 0) and (α = 0, δ = 0.25) respectively.
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Figure 15. Properties of the families of periodic orbits for β = 5, ρ = 0.85, (α =
0, δ = 0). From left to right and top to bottom: x0 vs % of the orbits period spent in
the day side of the asteroid; x0 vs minimum and maximum distance from the orbit to
the asteroid;

16



 0

 20

 40

 60

 80

 100

-0.6 -0.4 -0.2  0  0.2  0.4

%
 d

a
y

X0

β = 5, ρ = 0.85, α = 0.25, δ = 0

PLyap
VLyap

Halo

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-0.6 -0.4 -0.2  0  0.2  0.4

rm
in

 /
 r

m
a

x

X0

β = 5, ρ = 0.85, α = 0.25, δ = 0

PLyap
VLyap

Halo

Figure 16. Properties of the families of periodic orbits for β = 5, ρ = 0.85, (α =
0.25, δ = 0). From left to right and top to bottom: x0 vs % of the orbits period spent
in the day side of the asteroid; x0 vs minimum and maximum distance from the orbit
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Notice how, as we move along the families of Planar and Vertical Lyapunov type of periodic
orbits the maximum and minim distance to the asteroid differs a lot, having very close passages
(rmin ≈ 5× 10−3UD (1609.8km) vs rmax ≈ 0.5 UD (160983.3km) from the centre of Ceres). This
can easily be understood by looking at the shape of both types of orbits (Figures 5 and 6).

If we look at the % of the period that the Planar and Vertical Lyapunov orbits spend on the day
side, we can see that at some point the orbits spend more than the 50% of their time on the day side.
The period of most of these orbits is ≈ 1.5UT (≈ 399 days), and the rotational period of Ceres is of
0.3781 days. This makes these orbits interesting for mission applications. Moreover, although we
can see in Figure 8 that these orbits are unstable, we can also observe that their instability decreases
drastically along the family.

When we look at the Halo-type orbits for a solar sail perpendicular to the Sun-asteroid line α =
δ = 0, these orbits spend all of their time on the shadow side of the asteroid. Notice that if we shift
the sail orientation, we find that some of these orbits do spend at most half of their period in the day
side. The period of these orbits is between 0.1 and 0.5 UT (i.e. 26.6 and 133 days). Although they
do not spend most of their time in the day side, the advantage of these terminator Halo-type orbits
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is that they are stable and no station keeping would be required. Nevertheless, we should need to
check how edged off do we see the asteroid from these orbits.

CONCLUSION

In this paper we have considered the AH3BP to model the dynamics of a solar sail close to an
asteroid, and have considered as example an asteroid of the size of Ceres and a sail performance
similar to NanoSail-D. For a fixed sail performance, here β̄ = 5 and ρ = 0.85, the system depends
on two parameters α and δ that define the sail orientation. We have focused on the region around
L2 as it gets close to the asteroid when we include the SRP, and described some of the most relevant
dynamical properties of the system depending on these two parameters (fixed points, periodic and
quasi-periodic motion).

For each fixed sail orientation we have 3 types of families of periodic orbits: Planar and Vertical
Lyapunov orbits and Halo-type orbits. These families are displaced with respect to the Sun-asteroid
line depending on the sail orientation. We have used the reduction to the centre manifold to ensure
that we have detected all the relevant trajectories: besides the periodic orbits there are Lissajous
type orbits and quasi-Halo orbits. Next, we have computed explicitly some of these Lissajous type
orbits. We are currently working in order to classify all the different types of quasi-periodic motion.

Finally, we have described some of the properties of the different families of periodic orbits that
could be interesting for a mission application close to Ceres. We have found that some of the orbits
spend more than half of their orbital period on the day side of the asteroid. Unfortunately, these
orbits are unstable and a station keeping strategy should be used in order to stay close to them. In
the near future we will deal with the controllability of these orbits. Given the instability rate and the
orbital period of these orbits a station keeping strategy should be feasible.
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