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Abstract. Electronic institutions (EIs) have been proposed
as a means of regulating open agent societies. EIs define the
rules of the game in agent societies by fixing what agents are
permitted and forbidden to do and under what circumstances.
And yet, there is the need for EIs to adapt their regulations
to comply with their goals despite coping with varying popu-
lations of self-interested agents. In this paper we focus on the
extension of EIs with autonomic capabilities to alllow them to
yield a dynamical answer to changing circumstances through
the adaptation of their norms.

1 Introduction

The growing complexity of advanced information systems in
the recent years, characterized by being distributed, open and
dynamical, has given rise to interest in the development of
systems capable of self-management. Such systems are known
as self-* systems [14], where the * sign indicates a variety of
properties: self-organization, self-configuration, self-diagnosis,
self-repair, etc. A particular approximation to the construc-
tion of self-* systems is represented by the vision of autonomic
computing [11], which constitutes an approximation to com-
puting systems with a minimal human interference. Some of
the many characteristics of autonomic systems are: it must
configure and reconfigure itself automatically under changing
(and unpredictable) conditions; it must aim at optimizing its
inner workings, monitoring its components and adjusting its
processings in order to achieve its goals; it must be able to
diagnose the causes of its eventual malfunctions and reparate
itself; it must act in accordance to and operate into a hetero-
geneous and open environment.

In what follows we argue that are EIs [5] a particular type
of self-* system. When looking at computer-mediated inter-
actions we regard Electronic Institutions (EI) as regulated
virtual environments wherein the relevant interactions among
participating agents take place. EIs have proved to be valuable
to develop open agent systems [10]. However, the challenges of
building open systems are still considerable, not only because
of the inherent complexity involved in having adequate inter-
operation of heterogeneous agents, but also because the need
for adapting regulations to comply with institutional goals
despite varying agents’ behaviors. Particularly, when dealing
with self-interested agents.
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The main goal of this work consists in studying how to en-
dow an EI with autonomic capabilities that alllow it to yield
a dynamical answer to changing circumstances through the
adaptation of its regulations. Among all the characteristics
that define an autonomic system we will focus on the study
of self-configuration as pointed out in [11] as a second char-
acteristic: “An autonomic computing system must configure
and reconfigure itself under varying (and in the future, even
unpredictable) conditions. System configuration or ”setup”
must occur automatically, as well as dynamic adjustments to
that configuration to best handle changing environments”.

The paper is organized as follows. In section 2 we introduce
the notion of autonomic electronic institution as an extension
of the classic notion of electronic institution along with a gen-
eral model for norm adaptation. Section 3 details a case study
to be employed as a scenario wherein to test the model pre-
sented in section 2. Section 4 provides some preliminary, em-
pirical results. Finally, section 5 summarizes some conclusions
and outlines paths to future research.

2 Autonomic Electronic Institutions

The idea behind EIs [17] is to mirror the role traditional insti-
tutions play in the establishment of “the rules of the game”–a
set of conventions that articulate agents’ interactions– but in
our case applied to agents (be them human or software) that
interact through messages whose (socially relevant) effects
are known to interacting parties. The essential roles EIs play
are both descriptive and prescriptive: the institution makes
the conventions explicit to participants, and it warrants their
compliance. EIs involve a conceptual framework to describe
agent interactions as well as an engineering framework [1] to
specify and deploy actual interaction environments.

Although EIs can be regarded as the computational coun-
terpart of human institutions for open agent systems, there
are several aspects in which they are nowadays lacking. Ac-
cording to North [18] human institutions are not static; they
may evolve over time by altering, eliminating or incorporating
norms. In this way, institutions can adapt to societal changes.
Nonetheless, neither the current notion of EI in [5] nor the en-
gineering framework in [1] support norm adaptation so that
an EI can self-configure. Thus, in what follows we study how
to extend the current notion of EI in [5] to support self-
configuration.

First of all, notice that in order for norms to adapt, we
believe that a “rational” view of EIs must be adopted (likewise
the rational view of organizations in [6]) and thus consider



that EIs seek specific goals. Hence, EIs continuously adapt
their norms to fulfill their goals. Furthermore, we assume that
an EI is situated in some environment that may be either
totally or partially observable by the EI and its participating
agents.

With this in mind, we observe that according to [5] an EI
is solely composed of: a dialogic framework establishing the
common language and ontology to be employed by partici-
pating agents; a performative structure defining its activities
along with their relationships; and a set of norms defining the
consequences of agents’ actions. From this follows that further
elements are required in order to incorporate the fundamen-
tal notions of goal and norm transition as captured by the
following definition of autonomic electronic institution.

Definition 2.1 Given a finite set of agents A, we de-
fine an Autonomic Electronic Institution (AEI) as a tuple
〈PS, N, DF, G, Pi, Pe, V, δ〉 where:

• PS stands for a performative structure;
• N stands for a finite set of norms;
• DF stands for a dialogic framework;
• G stands for a finite set of institutional goals;
• Pi = 〈i1, . . . , is〉 stands for the values of a finite set of in-

stitutional properties, where ij ∈ IR, 1 ≤ j ≤ s contains
the value of the j-th property;

• Pe = 〈e1, . . . , er〉 stands for the values of the environment
properties, where each ej is a vector, ej ∈ IRnj 1 ≤ j ≤ r
contains the value of the j-th property;

• Pa = 〈a1, . . . , an〉 stands for the values that character-
ize the institutional state of the agents in A, where aj =
〈aj1 , . . . , ajm〉 1 ≤ j ≤ n stands for the institutional state
of agent Aj;

• V stands for a finite set of reference values; and
• δ : PS × N × G × V → PS × N stands for a normative

transition function that maps a performative structure and
a set of norms into a new performative structure and a new
set of norms given a set of goals and a set of values for the
reference variables.

Notice that a major challenge in the design of an AEI is
to learn a normative transition function, δ, that ensures the
achievement of its institutional goals under changing condi-
tions. Next, we dissect the new elements composing an AEI.

An AEI employs norms to constrain agents’ behaviors and
to assess the consequences of their actions within the scope of
the institution. Although there is a plethora of formalizations
of the notion of norm in the literature, in this paper we adhere
to a simple definition of norms as effect propositions as defined
in [9]:

Definition 2.2 An effect proposition is an expression of the
form

A causes F if P1, . . . , Pn

where A is an action name, and each of F, P1, . . . , Pn(n ≥ 0)
is a fluent expression. About this proposition we say that it
describes the effect of A on F , and that P1, . . . , Pn are its
preconditions. If n = 0, we will drop if and write simply A
causes F . From this definition, changing a norm amounts to
changing either its pre-conditions, or its effect(s), or both.

Agents participating in an AEI have their social interac-
tions mediated by the institution according to its norms. As a

consequence of his interactions, only the institutional (social)
state of an agent can change since an AEI has no access what-
soever to the inner state of any participating agent. Therefore,
given a finite set of participating agents A = {A1, . . . , An}
where n ∈ IN, each agent Ai ∈ A can be fully characterized
by his institutional state, represented as a tuple of observable
values 〈ai1 , . . . , aim〉 where aij ∈ IR 1 ≤ j ≤ m. Thus, the ac-
tions of an agent within an AEI may change his institutional
state according to the institutional norms.

The main objective of an AEI is to accomplish its goals. For
this purpose, and AEI will adapt its norms. We assume that
the institution can observe the environment, the institutional
state of the agents participating in the institution, and its
own state to assess whether its goals are accomplished or not.
Thus, from the observation of environment properties(Pe),
institutional properties (Pi), and agents’ institutional prop-
erties (Pa),an AEI obtains the reference values required to
determine the fulfillment of goals. Formally, the reference val-
ues are defined as a vector V = 〈v1, . . . , vq〉 where each vj

results from applying a function hj upon the agents’ prop-
erties, the environmental properties and/or the institutional
properties; vj = hj(Pa, Pe, Pi), 1 ≤ j ≤ q.

Finally, we can turn our attention to institutional goals.
An example of institutional goal for the Traffic Regulation
Authority could be to keep the number of accidents below a
given threshold. In other words, to ensure that a reference
values satisfies some constraint.

Formally we define the goals of an AEI as a finite set of
constraints G = {c1, ..., cp} where each ci is defined as an
expression gi(V ) C [m, M ] where m, M ∈ IR, C stands for
either ∈ or 6∈, and gi is a function over the reference values.

2.1 Norm Adaptation

A major challenge in the design of an AEI is to learn a norma-
tive transition function that allows to accomplish institutional
goals under changing situations. In this work, we concentrate
on norm adaptation and therefore we consider that there is no
definition of performative structure. Thus, institutional goals
must be accomplished through norms, which will be the only
means of regulating agents’ actions. We are considering the
normative transition function defined in 2.1 in a more simple
way, δ : N × G × V → N , namely as a normative transition
function that maps a set of norms into a new set of norms.

From the definition 2.2 of norm, changing a norm amounts
to changing either its pre-conditions, or its effects, or both.
Norms can be parameterized, and therefore we propose that
each norm, Ni ∈ N , has a set of parameters 〈pi1 , ..., pim〉 ∈
IRim . Notice that when the parameters of the norms are asso-
ciated to the pre-conditions and/or to the effects, changing the
values of these parameters means changing the norm. When
we refer to change the norms or to adapt the norms we are
referring to change or to adapt the values of the parameters
of the norms. Norms have associated parametres that can be
changed to increase its persuasiveness depending on the agent
population behavior. We propose to learn the normative tran-
sition function by exploring the space of parameter values in
search for the ones that best accomplish goals for a given
population of agents. In this manner, if we can automatically
adapt norms to the global behavior of an agent population,
then, we can repeat it for a number of different agent popu-



lations and thus characterize the overall normative transition
function.

Figure 1 describes how this learning process is performed
for a given population of agents (A) using an evolutionary
approach. We have an initial set of individuals (〈I1, .., In〉),
where each individual represents a set of norm parameters
({〈p11, .., p1m〉 , ..., 〈pi1, .., pim〉}). The institution performs a
simulation for each individual with the population of agents
A, so that the norms represented by each individual can be
evaluated according to the institutional goals (Norm evalua-
tion).Finally, the AEI compiles the evaluations of all individ-
uals in order to perform the Norm adaptation process that
results with a new set of individuals (New norms) to be used
as an initial set of individuals for next step in the learning
process.
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Figure 1. Example of an step in norm adaptation using an
evolutionary approach.

3 Case Study: Traffic Control

Traffic control is a well-known problem that has been ap-
proached from different perspectives, which range from macro
simulation for road net design [20] to traffic flow improvement
by means of multi-agent systems [15]. We tackle this problem
from the Electronic Institutions point of view, and therefore,
this section is devoted to specify how traffic control can be
mapped into Autonomic Electronic Institutions.

In this manner, we consider the Traffic Regulation Author-
ity as an Autonomic Electronic Institution, and cars moving
along the road network as agents inside the institution. Con-
sidering this set-up, traffic norms regulated by Traffic Au-
thorities can therefore be translated in a straight forward
manner into norms belonging to the Electronic Institution.
Norms within this normative environment are thus related to
actions performed by cars (in fact, in our case, they are always
restricted to that). Additionally, norms do have associated
penalties that are imposed to those cars refusing or failing
to follow them. In our case study, we assume that the Traf-
fic Authority is always aware of norm violations: cars may or
may not respect rules, but they are not able to avoid the con-
sequences of their application. Furthermore, our Electronic

Institution is able to change norms based on its goals – just
as traffic authorities do modify their traffic rules– and, there-
fore, it is considered to be autonomic.

Our AEI sets up a normative environment where cars do
have a limited amount of credit (just as some real world driv-
ing license credit systems) so that norm offenses cause credit
reductions. The number of points subtracted for each traffic
norm violation is specified by the sanction associated to each
norm, and this sanction can be changed by the regulation au-
thority (that is, our AEI) if its change leads –or contributes
to– the accomplishment of goals. Eventually, those cars with-
out any remaining points are forbidden to circulate. On the
other hand, we assume a non-closed world, so expelled cars
are replaced by new ones having the total amount of points.

Figure 2. Grid environment representation of a 2-lane road
junction.

Getting into more detail, we focus on a two-road junction. It
is a very restrictive problem setting, but it is complex enough
to allow us to tackle the problem without losing control of all
the factors that may influence the results. In particular, no
traffic signals (neither yield or stop signals nor traffic lights)
are considered, therefore, cars must only coordinate by fol-
lowing the traffic norms imposed by the AEI. Our institution
is required to define these traffic norms based on general goals
such as minimization of the number of accidents or deadlock
avoidance.

We model the environment as a grid composed by road
and field cells. Road cells define 2 orthogonal roads that in-
tersect in the center (see figure 2). Discretization granularity
is such that cars have the size of a cell. As section 3.2 details,
our model has been developed with the Simma tool [13]. Al-
though the number of road lanes can be changed parametri-
cally, henceforth we assume the 2-lane case. Next subsections
are devoted to define this “toy problem” and present our so-
lution proposal in terms of it. But before that, we introduce
some nomenclature definitions:

• Ai: an agent i, agents correspond to cars.
• t: time step. Our model considers discrete time steps (ticks).
• (Jx, Jy): size in x, y of our road junction area.
• J : inner road junction area with (xJ

0 , yJ
0 ) as top left cell

inside it
J = {(x, y) | x ∈ [xJ

0 , xJ
0 + Jx − 1], y ∈ [yJ

0 , yJ
0 + Jy − 1]}

Considering the 4 J cells in the junction area of Figure 2:
J = {(xJ

0 , yJ
0 ), (xJ

0 + 1, yJ
0 ), (xJ

0 , yJ
0 + 1), (xJ

0 + 1, yJ
0 + 1)}.

• JBE : Junction Boundary Entrance, set of cells surrounding
the junction that can be used by cars to access it. They
correspond to cells near by the junction that belong to in-
coming lanes. Figure 2 depicts JBE = {(xJ

0 , yJ
0 − 1), (xJ

0 −



1, yJ
0 + Jy − 1), (xJ

0 + Jx − 1, yJ
0 + Jy, (xJ

0 + Jx, yJ
0 ))}.

Nevertheless, the concept of boundary is not restricted to
adjacent cells: a car can be also considered to be coming
into the junction if it is located one –or even a few– cells
away from the junction.

• (xt
i, y

t
i): position of car Ai at time t, where (x, y) ∈ IN× IN

stands for a cell in the grid.
• (ht

ix, ht
iy): heading of car Ai, which is located in (x, y) at

time t. Heading directions run along x, y axes and are con-
sidered to be positive when the car moves right or down
respectively. In our orthogonal environment, heading val-
ues are: 1 if moving right or down; −1 if left or up; and 0
otherwise (i.e., the car is not driving in the axe direction).
In this manner, car4’s heading on the right road of figure
3 is (-1,0).

3.1 AEI specification

3.1.1 Environment

As mentioned above, we consider the environment to be a
grid. This grid is composed of cells, which can represent roads
or fields. The main difference among these two types is that
road cells can contain cars. Indeed, cars move among road
cells along time.

Figure 2 depicts a 8 × 8 grid example. The top left corner
of the grid represents the origin in the x, y axes. Thus, in the
example, cell positions range from (0,0) in the origin up to
(7,7) at the bottom-right corner. Additionally, a cell is a road
if one of its x, y coordinates belong to J inner junction area
(see previous definition).

We define this grid environment as:

Pe = 〈(x, y, α, r, dx, dy) | 0 ≤ x ≤ maxx, 0 ≤ y ≤ maxy, α ⊆
P(A) ∪Ø,

r ∈ [0, 1], dx ∈ [−1, 0, 1], dy ∈ [−1, 0, 1] 〉

being x and y the cell position, α defines the set of agents
inside the grid cell (x, y) (notice that α ⊆ A), r indicates
whether this cell represents a road or not, and, in case it is
a road, dx and dy stand for the lane direction, whose values
are the same as the ones for car headings. Noticie that the
institution can observe the environment properties along time,
we use P t

e to refer the values of the grid environment at a
specific time t. This discretized environment can be observed
both by the institution and cars. The institution observes and
keeps track of its evolution along time, whilst cars do have
locality restrictions on their observations.

3.1.2 Agents

We consider A = 〈A1, ..., An〉 to be a finite set of n agents
in the institution. As mentioned before, agents correspond to
cars that move inside the grid environment, with the restric-
tion that they can only move within road cells. Additionally,
agents are given an account of points which decreases with
traffic offenses. The institution forbids agents to drive with-
out points in their accounts.
The institution can observe the Pa = 〈a1, . . . , an〉 agents’ in-
stitutional properties, where

ai = 〈xi, yi, hix, hiy, speedi, indicatori, offensesi,
accidentsi, distancei, pointsi〉

These properties stand for: car Ai’s position within the
grid, its heading, its speed, whether the car is indicating a
trajectory change for the next time step (that is, if it has the
intention to turn, to stop or to move backwards), the norms
being currently violated by Ai, wether the car is involved in
an accident, the distance between the car and the car ahead
of it; and, finally, agent Ai’s point account. Notice that the
institution can observe the agent properties along time, we
use at

i to refer the agent Ai’s properties at a specific time t.

3.1.3 Reference values

In addition to car properties, the institution is able to extract
reference values from the observable properties of the envi-
ronment, the participating agents and the institution. Thus,
these reference values are computed as a compound of other
observed values. Considering our road junction case study, we
identity different reference values:

V = 〈num collisions, num crashed, median offenses,
dispersion offenses, num blocked〉

where num collisions indicates total number of collisions
for last tw ticks (0 ≤ tw ≤ tnow):

num collisions=
∑tnow

t=tnow−tw

∑
e∈P t

e
f(eαt)

being P t
e the values of the grid environment at time t, eαt the

αt component of element e ∈ P t
e and

f(eαt) = {1 if |eαt |>1

0 otherwise .

Furthermore, num crashed counts the number of cars in-
volved in accidents for last tw ticks, median offenses indi-
cates the median of the offenses accumulated by all agents
during last tw ticks, similarly, dispersion offenses computes
the dispersion of the offenses, and finally, num blocked shows
how many cars have been blocked by other cars for last tw

ticks.

3.1.4 Goals

Goals are institutional goals. The aim of the traffic authority
institution is to accomplish as many goals as possible.The
institution tries to accomplish these goals by defining a set of
norms (see subsection 3.1.5).

Institutional goals are defined as constraints upon a combi-
nation of reference values. Considering our scenario, we define
restrictions as intervals of acceptable values for the previous
defined reference values (V ) so that we consider the institution
accomplishes its goals if V values are within their correspond-
ing intervals. In fact, the aim is to minimize the number of
accidents, the number of traffic offenses, as well as the number
of blocked cars by establishing the list of institutional goals
G as:

G = 〈 num collisions ∈ [0, MaxCollisions],
num crashed ∈ [0, MaxCrashed],
Median Off ∈ [0, MaxOffences],
Disp Off ∈ [0, MaxDispOffences],
num blocked ∈ [0, MaxBlocked] 〉



3.1.5 Norms

Autonomic Electronic Institutions try to accomplish goals by
defining norms. Norms have associated penalties that are im-
posed to those cars refusing or failing to follow them. These
penalties can be parameterized to increase its persuasiveness
depending on the agent population behavior.

Figure 3. Priority to give way to the right (Simma tool
screenshot).

Considering a road junction without traffic signals, priori-
ties become basic to avoid collisions. We consider, as in most
continental Europe, that the default priority is to give way to
the right. This norm prevents a car Ai located on the Junc-
tion Boundary Entrance (JBE) to move forward or to turn
left whenever there is another car Aj on its right. For exam-
ple, car 1 in figure 3 must wait for car 2 on its right, which
must also wait for car 3 at the bottom JBE . The formaliza-
tion in table 1 can be read as follows: “if car Ai moves from a
position in JBE at time t − 1 to its next heading position at
time t without indicating a right turn, and if it performs this
action when having a car Aj at the JBE on its right, then the
institution will fine Ai by decreasing its points by a certain
amount” (see figure 4).

Table 1. Right priority norm.

Action in(ai, JBE , t− 1)∧
in(ai, (x

t−1
i + ht−1

ix , yt−1
i + ht−1

iy ), t)∧
qindicator(ai, right, t− 1)

Pre-conditions right(ai, aj , t− 1)

Consequence pointst
i = pointst

i − fine

Where the predicate in(ai, Region, t) in table 1 is equiv-
alent to ∃(x, y, αt, r, dx, dy) ∈ Et so that (x, y) ∈

Figure 4. Priority to give way to the right.

Region and ai ∈ αt and right(ai, aj , t) is a boolean func-
tion that returns true if car aj is located at JBE area on the
right side of car ai. For the 2-lane JBE case in Figure 2, it cor-
responds to the formula: (xt

i−ht
iy +ht

ixJx, yt
i +ht

ix +ht
iyJy) =

(xt
j , y

t
j).

Other norms, such as deadlock avoidance or junction block-
ing prevention have been considered and implemented. Nev-
ertheless, due to the lack of space, we cannot detail them.

3.2 Experimental Settings and Design

As a proof of concept of our proposal in section 2.1, we have
designed an experimental setting that implements the traffic
case study. In this preliminary experiment we consider a single
normative goal (num collisions) and the right priority norm
in table 1, which is parameterized by its fine (i.e., points to
subtract to the car falling to follow the norm).

The 2-road junction traffic model has been developed with
Simma [13], a graphical MAS simulation tool shown in Figure
3, in such way that both environment and agents can be easily
changed. In our experimental settings, we have modeled the
environment as a 16×16 grid where both crossing roads have 2
lanes with opposite directions. Additionally, the environment
is populated with 10 cars, having 40 points each.

Our institution can observe the agents properties for each
tick and can keep a record of them in order to refer to past
ticks. In fact, the institution usually determines traffic offenses
by analyzing agent actions along time. Agent actions are ob-
served through consecutive car positions and indicators (no-
tice that the usage of indicators is compulsory for cars in this
problem set up). During our discrete event simulation, the
institution replaces those cars running out of points by new
cars, so that the cars’ population is kept constant. Cars follow
random trajectories at a constant 1-cell/tick speed and they
collision if two or more cars run into the same cell. In that
case, the involved cars do remain for two ticks in that cell
before they can start following a new trajectory.

Cars correspond to agents without learning skills. They
just move based on their trajectories and institutional norms.
Agents have local information about their environment (i.e.,
grid surrounding cells) and know whether their next moves
will violate a norm and what fine will be thus applied. Agents
decide whether to comply with a norm based on three pa-
rameters: 〈fulfill prob , high punishment, inc prob〉. Being
fulfill prob ∈ [0, 1] the probability of complying with norms
that is initially assigned to each agent, high punishment ∈ IN
the fine threshold that causes an agent to consider a fine
to be high enough to reconsider the norm compliance, and



inc prob ∈ [0, 1] the probability increment that is added
to fulfill prob when the fine threshold is surpassed by the
norm being violated. In summary, agents decide whether they
keep moving regardless of violated norms or they stop in
order to comply with norms based on a probability that
is computed as: final prob = fulfill prob + inc prob when
fine > high punishment.

Our goal is to adapt norms to agent behaviors by apply-
ing Genetic Algorithms (GA)3 to accomplish the institutional
goal, to minimize the total number of collisions. We propose
learn the norms by different agent populations behavior by
simulation. Once specified what are the different agent popu-
lations behavior, a genetic algorithm is running by each pop-
ulation of agents. We use 10 individuals in each step of the
genetic algorithm, where each individual is a set of parame-
ters. Therefore, norm adaptation is implemented as a learn-
ing process of the “best” norm parameters. To evaluate an
individual we run 10 times the simulator with the set of pa-
rameters of the individual. The simulator run the AEI model
explained above during 5000 ticks. Thus, norm quality is given
by a fitness function that considers the number of collisions,
which is computed as an average of 10 different 5000-tick-long
simulations for each model setting.

4 Results

From the experimental settings specified above, we have run
experiments for three different agent populations. These pop-
ulations are characterized by their norm compliance parame-
ters, being fulfill prob = 0.5 and inc prob = 0.4 for the three
of them whereas high punishment varies from 5 for the first,
to 10 for the second, up to 14 for the third (see table 2).

Since the right priority norm contributes to reduce acci-
dents, our AEI must learn how to vary its fine parameter to
increase its persuasiveness for agents, and eventually, to ac-
complish the normative goal of minimizing the total number
of collisions. As to shows table 2, our experiments have re-
sulted in that our AEI learned a fine of 14, 12, and 15 for
each respective population. In all three cases, the learned fine
is larger than the population’s high punishment value, and
therefore, the goal is successfully reached4. In this manner, we
can state the AEI success in learning the norms that better
accomplish its goal.

Next figure 5 gives some more detail about the performance
of agent populations for different norm fine values. First chart
compares the number of collisions per 100 ticks when the fine
is 4 with the resulting number of collisions when it is 14, which
is the learnt value for agents with a high punishment thresh-
old equal to 5. Analogously, second and third charts compare
results between value 4 and learnt values 12 and 15 respec-
tively (which, again, are learnt when the corresponding agent
populations have 10 and 14 threshold values). For all three
cases, we can observe that the number of collisions for fine 4
keep above the ones for learnt fines. It is so both in average
and along the curve that results from a simulation of 5000
ticks. As expected, the reason is that value 4 is smaller than
the high punishment values for all three agent populations.

3 We use GAlib [19], a C++ library of genetic algorithm compo-
nents

4 Notice that, due to the agent’s behavior, any fine value higher that
the population high punishment value will be equally successful.

Additionally, we can also observe that the deviation in the
number of collisions is smaller as well.

Table 2. Learning results for three different agent populations.

Parameters population1 population2 population3
fulfill prob 0.5 0.5 0.5
high punishment 5 10 14
inc prob 0.4 0.4 0.4

Learned fine 14 12 15

5 Discussion and Future work

Within the area of Multi-Agent Systems, adaptation has been
usually envisioned as an agent capability. In this manner,
works such as the one by Excelente-Toledo and Jennings [7]
propose a decision making framework that enables agents to
dynamically select the coordination mechanism that is most
appropriate to their circumstances. On the other hand, it has
been long stated [2] that agents working in a common society
need norms to avoid and solve conflicts, make agreements, re-
duce complexity, or to achieve a social order. Both approaches
–i.e. adaptation and norms– have been considered together by
Lopez-y-Lopez et al. [12], where agents can adapt to norm-
based systems and they can even autonomously decide its
commitment to obey norms in order to achieve associated in-
stitutional goals. This adaptation from the point of view of
agents in these related works is the most remarkable difference
with the approach presented in this paper, which focuses on
adapting the institution –that is, the authority issuing norms–
rather than adapting the agents. Institution adaptation is ac-
complished by changing norms autonomously. Therefore, we
do not select norms at design stages as it is done by Fitoussi
and Tennenholtz [8], who do it so by proposing the notions
of minimality and simplicity as selecting criteria. They study
two basic settings, which include Automated-Guided-Vehicles
(AGV) with traffic laws, by assuming an environment that
consists of (two) agents and a set of strategies available to
(each of) them. From this set, agents devise the appropriate
ones in order to reach their assigned goals without violating
social laws, which must be respected.

Regarding the traffic domain, MAS has been previously ap-
plied to it [15] [4] [3]. But traffic has been also widely studied
outside the scope of MAS, for example, the preliminary work
by [16] used Strongly Typed Genetic Programming (STGP)
to controll the timings of traffic signals within a network of
orthogonal intersections. Their evaluation function computed
the overall delay.

Preliminary results in this paper provide soundness to our
AEI approach. We plan to perform the same experiments with
other norms and with more goals. Nevertheless, we plan to ex-
tend both our traffic model and the institutional adaptation
capabilities so that the AEI will not only learn the most ap-
propriate norms for a given agent population, but it will be
able to adapt to any change in the population.
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Figure 5. Number of collisions per 100 ticks along a 5000-tick
simulation.
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