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Abstract— This paper describes two methods for
weighting the feature relevance in a Case-Based Rea-
soning system. The first weighting method proposed
inside the Case-Based Reasoning is based on Rough
Sets theory. The second one is based on Sample Corre-
lation. These weighting methods has been implemented
into the platform called BASTIAN (case-BAsed Sys-
Tem In clAssificatioN), which is a Case-Based Classi-
fier System. Experiments in different domains from
the UCI repository show that these weighting methods
improve accuracy rate.
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ing, Diagnose, Knowledge Discovery.

I. INTRODUCTION

UR main goal is to develop, evaluate and im-
prove classifier systems. Following this idea, we
have been working on weighting methods to improve
the accuracy rate in this kind of systems. This pa-
per describes and analyses the Rough Sets theory as
a weighting method in a Case-Based Classifier Sys-
tem. This hybrid system is compared to the Sample
Correlation as weighting method to test its reliability.
The paper is structured as described. First we
present an overview of Case-Based Reasoning and the
main points of the platform used to test that exper-
iments. Next, we explain both weighting methods
analysed. Section III-A proposes the Rough Sets the-
ory as a weighting method for a Case-Based Classifier
system. Section III-C describes the Sample Correla-
tion weighting method. Sections IV and V expose the
testbed used and the results obtained respectively. Fi-
nally, the last section presents the conclusions and fur-
ther work.

II. CASE-BASED CLASSIFIER SYSTEM

Case-Based Reasoning integrates in one system two
different characteristics: machine learning capabilities
and problem solving capabilities. CBR uses a similar
philosophy to that which humans sometimes use: it
tries to solve new cases (examples) of a problem by
using old previously solved cases [1], [2]. The process
of solving new cases contributes with new information
and new knowledge to the system. This new informa-
tion can be used for solving other future cases. The
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basic method can be easily described in terms of its
four phases [3].

The first phase retrieves old solved cases similar to
the new one. In the second phase, the system tries
to reuse the solutions of the previously retrieved cases
for solving the new case. The third phase revises the
proposed solution. Finally, the fourth phase retains
the useful information obtained when solving the new
case. In a Case-Based Classifier System, it is possible
to simplify the reuse phase classifying the new case
with the same class as the most similar retrieved case.

The retrieval phase is the kernel in a Case-Based
Reasoning system. That phase retrieves the most sim-
ilar case or cases to the new one. The most simi-
lar case is chosen using different similarity functions.
The similarity functions used in that paper are based
on distance concept, see section II-A.2. These sim-
ilarity functions compute the similarity between two
cases measuring the distance between features. If we
assume an accurate weight setting of features, a Case-
Based Classifier System can increase their prediction
accuracy.

This paper is focused on weighting methods to com-
pute the feature relevance. We compare 3 different
ideas:

o Not Weighting, we do not weigh the features of
our problems.

¢ Rough Sets theory, we propose the rough sets
theory as a weighting method [4].

o Sample Correlation, we use the Sample Correla-
tion as a weighting method [5]. This method has been
proposed to compare the Rough Sets theory reliability.

A. Description of BASTIAN platform

BASTIAN (case BAsed SysTem In clAssificatioN)
platform is a Case-Based Reasoning system used in
classification. BASTIAN system is an extension of
CaB-CS (Case-Based Classifier System) system [5],
[6], [7]. It allows the user to test several variants of
CBR.

We present the main points of BASTIAN platform
to explain in details how the Rough Sets theory is
introduced in a Case-Based Reasoning system. The
Sample Correlation has also been introduced into the
BASTIAN system, but the original implementation
was in CaB-CS system [8]. The platform developed
using the JAVA programming language is explained
in [4].



A.1 General Structure of BASTIAN platform

The BASTIAN high level structure can be seen in
figure 1. It maintains the four phases described in
[3], [9]- The system adds a previous phase Startupln-
terface, not incorporate on the Case-Based Reasoning
cycle, that prepares the initial start-up of the system.
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Fig. 1. General Structure in BASTIAN

The system functionalities are developed to work
separately and independent in cooperation among the
rest. The kernel of BASTIAN changes dinamically de-
pending on the type of Case-Based Reasoner we want
to develop. The main functionalities we focus on our
paper are:

o SimilarityFunctionInterface concentrates all the
characteristics related to similarity functions. Let us
change the similarity function dynamically into the
system during one execution. The similarity functions
used in that paper are explained in section II-A.2.

o WeightingInterface contains the mecanisms to com-
pute the feature relevance in a Case-Based Classifier
System. It is related to the Retrievallnterface.

o {Retrieval, Reuse, Revise, Retain}Interface are the
four phases of the CBR cycle. These interfaces de-
scribe the behaviour of each phase.

A.2 Similarity Functions

This paper uses the similarity functions based on the
distance concept. The most used similarity function is
the Nearest Neighbour algorithm [10], [11], which com-
putes the similarity between two cases using a global
similarity measure. The implementation used is based
on the Minkowsky’s metric [12], [7]. In this paper, we
also use the Clark’s distance and the Cosine distance
[13].

Minkowsky’s metric

The Minkowsky’s metric is defined as:

Sim(Case_z, Case_y) sz lz; — il (1)

Where Case_z and Case_y are two cases, whose sim-
ilarity is computed; F'is the number of features that
describes the case; x;, y; represent the value of the ith
feature of cases Case_x and Case_y respectively; and
w; is the weight of the ith feature.

In this study we test the Minkowsky’s metric for
three different values of r: Hamming distance for
r = 1, Buclidean distance for r = 2, and Cubic dis-
tance for r = 3.

Clark’s distance

The Clark’s distance is defined as:

Sim(Case_x,Case_y)
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Where Case_z and Case_y are two cases, whose
similarity is computed; F is the number of features
that describes the case; and x;, y; represent the value
of the ith feature of cases Case_x and Case_y respec-
tively; and w; is the weight of the ith feature.

Cosine distance
The Cosine distance is based on vector properties in

an Euclidean space. It measures the Cosine angle in a
n-dimensional vector space. This metric is defined as:
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Sim(Case_x, Case_y) =
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(3)

Where F' represents the number of features that de-

scribe the cases; and z;,y; represent the value of the

ith feature of cases Case_x and Case_y respectively;
and w; is the weight of the ith feature.

III. FEATURE RELEVANCE

Feature relevance is used to improve the accuracy
rate of the Case-Based Classifier system [11], [14], [15].
The aim of this paper is to propose and evaluate the
Rough Sets theory as a weigthing method. This ap-
proach is compared to the results obtained using the
Sample Correlation [5], [16].

The section is divided in an introduction to the
Rough Sets theory, the basis concepts of Rough Sets
and the incorporation of Rough Sets into the Case-
Based Classifier System. The last part shows the Sam-
ple Correlation as a weigthing method.

A. Rough Sets Theory

Zdzislaw Pawlak introduced Rough Sets theory in
1982 [17], [18], [19]. The idea of the Rough Sets con-
sists of the approximation of a set by a pair of sets,
called the lower and the upper approximation of this
set. In fact, these approximations are inner and clo-
sure operations in a certain topology generated by the
available data about elements of the set.



We use Rough Sets theory for reducing and extract-
ing the dependencies in the knowledge. These depen-
dencies are the basis for computing the relevance of
each feature into the Case-Based Classifier System.

B. Rough Sets inside Case Based Reasoning System

We incorporate some concepts in this paper to ex-
plain how the dependencies we are looking for from
the domain are obtained to select the best weighting.

B.1 Basic Concepts and Definitions

We compute from our Universe (U) (finite and
not null set of objects that describes our problem, this
is the case memory) the concepts (objects or cases)
that form partitions of that Universe. The union of
all the concepts make the entire Universe. Using all
the concepts we can describe all the equivalence re-
lations (R) over the universe (U). Let an equivalence
relation be a set of features that describe a specific
concept. U/R are the family of all equivalence classes
of (R).

The universe and the relations form the knowledge
base (KB), defined as KB = < U, R >. Where R
is the family of equivalence relations over U. Every
relation over the universe is an elementary concept in
the knowledge base.

All the concepts are formed by a set of equivalence
relations that describe them. Thus, we search for the
minimum set of equivalence relations that define the
same concept as the initial set.

DEFINITION 1 (INDISCERNIBILITY RELATIONS)
It can be defined as IND(P)=(\ R where P C R. The
indiscernibility relation is the intersection of proper-
ties over P. The indiscernibility shows the refined in-
formation over a concept and gives all the information
about the equivalence relation that exists in P.

DEFINITION 2 (Basic KNOWLEDGE)
The basic knowledge is the family of all equivalence

classes of the equivalence relation IND(P). The basic
knowledge shows all the knowledge associated with the
family of equivalence relation P.

DEFINITION 3 (P-BASIC CATEGORIES)
P-basic categories are those basic properties of the uni-
verse, which can be expressed using knowledge from
P. They are the building blocks of the existing knowl-
edge.

Let K = (U, R) be a knowledge base.

IND(K) = (IND(P): 0 # P C R) is the family of
all equivalence relations defined in K.

B.2 Rough Sets

Let X C U and R be an equivalence relation. We
will say that:
e X is R-definable if X is the union of some R-basic
categories; otherwise X is R-undefinable.
o The R-definable sets are those subsets of the uni-
verse which can be exactly defined in the knowledge
base K, whereas the R-undefinable sets can not be
defined in this knowledge base.

o The R-undefinable set will be also called R-rough.

e The set X C U will be called exact in K if there
exists R € IND(K) such that X is R-exact, and X
is called to be rough in K, if X is R-rough for any
R e IND(K).

Approximations of Set

This is the main idea of rough sets, approximate a
set by other sets. The next definitions will explain this
idea.

Suppose a given knowledge base K =< U,R >.
With each subset X C U and an equivalence relation
R C IND(K) there are associate two subsets called:
o Lower approximation
o Upper approximation

DEFINITION 4 (LOWER APPROXIMATION)

The lower approximation, defined as: RX = |J{ Y €
U/R : Y C X}. The lower approximation is the set of
all elements of U which can be certainty classified as
elements of X in the knowledge R.

DEFINITION 5 (UPPER APPROXIMATION)

The upper approximation, RX =|J{ Y€ U/R: X
Y # 0 }. The upper approximation is the set of ele-
ments of U which can be possibly classified as elements
of X, employing knowledge R.

Reduct and Core of knowledge

Intuitively, a reduct of knowledge is its essential
part, which suffices to define all concepts occurring
in the considered knowledge, whereas the core is the
most important part of the knowledge.

Let R be a family of equivalence relations and let R
€ R. We will say that:
o R is indispensable if IND(R) # IND(R - R); other-
wise it is dispensable.
o The family R is independent if each R € R is indis-
pensable in R; otherwise it is dependent.

DEFINITION 6 (REDUCT)

Q € R is a reduct of R if :

1. Q is independent.

2. IND(Q) = IND(R). Using Q it is possible ap-
proximate the same as using R.

DEFINITION 7 (CORE)
The set of all indispensable relations in R will be called
the core of R, and will be denoted CORE(R).

CORE(R ﬂ RED(R (4)

where RED(R) is the family of all reducts of R.

ExampLE III.1

If we consider a set of 8 objects in our Universe,
U = (z1,22,23,24,%5,%6,%7,Tg), using as a family
of equivalence relations over U:R = (P, Q, S). Where
P are colours (green, blue, red, yellow); @) are sizes
(small, large, medium); and S are shapes (square,
round, triangular, rectangular). In order to find the
reducts and the core of the knowledge. Our equiva-
lence classes are:



U/P = ((z1,34,25), (22,38), (v3),(z6,27) )

U/Q =((w1,3,5), (6), (x3,24,27,75) )

U/S = ((x1,25), (z6), (€2, 7,25), (v3,24) )

Thus the relation IN D(R) has the equivalence classes:

U/IND(R) = ( (z1,%5), (v2,28), (v3), (z4), (z6), (7))

The relation P is indispensable in R, since:
U/IND(R — P) = ( (z1,25), (22, o7, z5), (v3), (24), (z6) ) #
U/IND(R).

U/IND(R - Q) = ( (:121,:135), ($27 :Eg), (I3)7 ($4)7 (Iﬁ)’ (I7) )
= U/IND(R).

The information obtained is equal, so the relation
Q is dispensable in R.

U/IND(Rf S) = ((z1,5), (2, w8), (¥3), (z4), (ws), (z7) )
= U/IND(R).

Hence the relation S is also dispensable in R.

That means that the classification defined by the set
of three equivalence relations P, and S is the same
as the classification defined by relation P and @ or P
and S.

So the reducts and the core are:

RED(R) = ((P,Q), (P,S))
CORE(R) = (P)

B.3 How introduce the RS theory in our CBR system?

We use the information of reducts and the core to
weigh the relevance of each feature in the system. A
feature that does not appear in the reducts has a
weight value of 0.0, whereas a feature that appears
in the core has a weight value of 1.0. The rest of
features have a weight value depending on the propor-
tional appearance in the reducts. This is the weight
feature information used in BASTIAN.

Figure 2 shows the meta-level process when the
Rough Sets theory are incorporated into BASTTAN.
Rough Sets are divided in three steps: the first one
discretises the examples, it is necessary to find the
most relevant information using the Rough Sets the-
ory; the second step searches the reducts and the core
of knowledge using the Rough Sets theory; and finally,
the third step uses the core and the reducts of knowl-
edge to decide the feature relevance value.

" Weights
Examples o Search Extraction for
Discretise Reducts & CORE of Feature
Relevance each
attribute

Fig. 2. High level process of Rough Sets

The RS theory has been introduced as weighting
method in two phases of the CBR system: the first
is the start-up phase and the second is in the retain
phase. The start-up phase compute the weights from
the initial case memory, these weights will be used by
the retrieval phase later. The retain phase computes
the weights from the case memory whether the new
case is stored and the system works dynamically. This
paper presents the results obtained when the system
works statically. The feature relevance is computed in
the initial case memory.

C. Sample Correlation

BASTIAN incorporates the Sample Correlation de-
veloped into CaB-CS system [8]. It uses Sample
Correlation in order to compute the weights w; that
weigh the relevance of the features ¢. In other words,
the weights are performed by the Sample Correlation
which exists between each feature z; and the class y
(corr(x;,y)). The corr(x;,y) is defined as:

N
.1 Tij — Tf Y Y
Corr(z;,y) = N_1 Z( JS“ > ( JSy ) ®

j=1

Where N is the number of cases; z;; is the value
of the ith feature for the case j; y; is the class which
belongs to the case j; Z; is the mean of the ith feature;
Y is the mean of the classes; S,; is the standard devia-
tion of the feature x;; and Sy, is the standard deviation
of the class y.

IV. TESTBED

The experimentation has based on 4 data sets from
the UCI repository ( echocardiogram, iris, breast can-
cer Wisconsin, water-treatment), and one data set
from our own repository (mammogram problem). See
table I and table II which show their characteristics.

TABLE 1
DATA SET USED FOR THESE EXPERIMENTS

Domain Reference
Echocardiogram E
Iris I
Breast cancer (Wisconsin) BC
Water-treatment wWT
Mammogram problem M

The mammogram problem consists of detecting
breast cancer using the information found in a mam-
mography [12], [16], [13]. A microcalcification (uCa)
usually appears, in the mammographies, as small,
bright, arbitrarily shaped regions on the large variety
of breast texture background. Thus, their analysis and
characterisation are performed throughout the extrac-
tion of features and visibility descriptors by means of
several image processing techniques [20]. Each exam-
ple contains the description of several pCa present in
the image. For each of these microcalcifications there
are 23 real valued features. In other words, the input
information used is a set of m x 23 real valued ma-
trixes, where m is the number of yCa present on the
image. The data set contains 216 examples.

The examples of each data set have been grouped
in two sets: the training set and the test set. We use
the first set to train the system, and the second one to
test. The training set and the test set are generated
using different proportions of the examples: 10% of
the examples for the training set and the rest (90%)
for the test set, 20% of the examples for the training
set and the rest (80%) for the test set, ..., until 90%
for the training set and 10% for the test set.

We have test each data set using different configu-
rations of BASTTAN system, (like different similarity



CHARACTERISTICS OF THE DATA SET USED IN THE EXPERIMENTS

TABLE II

Ref Sam-  Fea- Cla- Missing Incon-
ples tures sses Values sistent

E 132 9 2 132 Yes

I 150 4 3 0 No

BC 699 9 2 9 Yes

WT 527 38 13 591 Yes

M 216 23 2 0 Yes

RESULTS FOR THE IRIS PROBLEM

TABLE IV

Prop Max Max Max Mean Mean Mean
Train W RS-W  Corr-W -W RS-W  Corr-W
40% 98.88 97.77 98.88 96.22 96.00 96.22
60% 97.77 97.77 98.33 95.33 95.50 96.16
70% 100.0 100.0 97.77 95.11 95.33 95.77
80% 100.0 100.0 100.0 97.00 97.00 97.33
90% 100.0 100.0 100.0 96.66 96.66 97.33

functions, different retain policies, etc.), a total num-
ber of 2700 runs.

V. RESuULTS

We present in this section the main results obtained
for each data set tested. Table III presents the maxi-
mum results obtained during the execution of the 90%
proportion of training set and 10% test set. The =W
column is the results obtained using BASTIAN with-
out weighting the features, the RS-W column shows
the results for the BASTIAN system using the Rough
Sets theory as a weighting method, and the last one,
Corr-W, shows the results for the Sample Correlation.

TABLE 111
MAXIMUM RESULTS OBTAINED FOR EACH DATA SET

Ref -W RS-W  Corr-W
E 78.57 78.57 85.71
I 100.0 100.0 100.0
BC 98.71 100.0 98.71
wT 77.35 79.20 79.20
M 77.27 81.81 81.81

The results presented obtain a good accuracy rate.
We want to outline that the maximum accuracy per-
centage obtained, using the Rough Sets as a weighting
method, appear more frequently than the results ob-
tained without weighting the features.
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Fig. 3. Mean results in the echocardiogram problem

Figure 3 shows the mean results obtained for the
echocardiogram problem in all the training set propor-
tions. Figure 3 denotes how important is the number
of cases into the case memory, and we can also no-
tice that the results depend on the number of missing
values.

Table IV shows the results obtained in different
training sets proportions for the Iris problem. The
results presented are the maximum and the mean per-
centage values. As it can be seen there are few differ-
ences between the Rough Sets hybrid system and the
original Case-Based Classifier System. The results de-
note also that it is very important the number of cases
included into the case memory to achieve a good accu-
racy in the weighting method. That influence can be
seen into the mean results for the Sample Correlation.

It is important to remark that the prediction accu-
racy depends on the case memory size. This fact can
be seen in all the problems analysed.
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Fig. 4. Maximum results in Breast Cancer Wisconsin

The results obtained for the Breast Cancer Wiscon-
sin problem can be found in figure 4. The case memory
in that data set is bigger than the previous ones. That
big case memory influences into the behaviour of the
system. Weighting methods get better performance in
early percentage of training sets than others data sets.
But the system also is sensitive to the increasing num-
ber of samples when it arrives to the last percentages
of training samples.

Figures 5 and 6 show the results obtained for all the
training sets proportions in the Water Treatment and
Mammogram problem respectively. As it can be seen,
the weighting feature methods needs a huge amount
of cases to develop a good weighting for the retrieval
phase. However, the system accuracy rate increases
when there are enough information in the system to
develop a good weighting criterion. Also, the system
decreases the standard deviation value if it uses the
Rough Sets theory as a weighting method.

We can also notice that it is very important to select
a representative initial case memory to achieve better
results. Hence, most of the best results obtained have
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Fig. 6. Maximum results in Mammogram problem

been achieved using an initial training when the sys-
tem load the initial case memory. The training set has
been decreased following this method. In this way, the
cases chosen were the more representatives to explain
the problem.

Finally, it is important to denote that all the dis-
cretisation has been done using the same criterion.
This criterion must be changed depending on the up-
per and lower bounds of each feature. This discretisa-
tion influences the results.

VI. CoNcLusiONS AND FURTHER WORK

This paper has introduced two different approaches
to weigh the feature relevance. The first one proposed
is the introduction of Rough Sets theory into a Case-
Based Classifier System. The second one is the Sample
Correlation as a comparative system to evaluate the
Rough Sets approach.

Both approaches has been tested using 4 data sets
from the UCI repository and one from our own reposi-
tory. We can conclude that: (1) both approaches need
a large number of samples to be able to get accurate
weighting values; (2) the Rough Sets approach help
the system to balance its own results, there are not
many differences in terms of deviation between all the
versions tested.

Our further work in this area will be to achieve bet-
ter performance using different criteria as weighting
methods and analysing other methods reported at lit-
erature as [11].
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