
Dynamic Case Base Maintenance

for a Case-Based Reasoning system

Maria Salamó and Elisabet Golobardes

Enginyeria i Arquitectura La Salle, Universitat Ramon Llull,
Quatre Camins 2, 08022 Barcelona, Catalonia, Spain

{mariasal,elisabet}@salleurl.edu

Abstract. The success of a case-based reasoning system depends crit-
ically on the relevance of the case base. Much current CBR research
focuses on how to compact and refine the contents of a case base at two
stages, acquisition or learning, along the problem solving process. Al-
though the two stages are closely related, there is few research on using
strategies at both stages at the same time. This paper presents a model
that allows to update itself dynamically taking information from the
learning process. Different policies has been applied to test the model.
Several experiments show its effectiveness in different domains from the
UCI repository.

1 Introduction

Learning is a process in which an organized representation of experience is con-
structed [Scott, 1983]. However, this experience cause two problems in Case-
Based Reasoning (CBR) systems, as reported in recent years. The first one is
the swamping problem which relates to the expense of searching large case-bases
for appropriate cases with which to solve the current problem. The second one
is that the experience can be harmful and may degrade the system performance
(understanding performance as problem solving efficiency).

Research on the area highlights to deal with negative knowledge using dif-
ferent strategies. Negative Knowledge is correct knowledge that can be a source
of unsuccessful performance [Markovitch, S. and Scott, P.D., 1988]. Minton has
demonstrated by selective discarding knowledge in a system [Minton, 1985] that
the performance can be improved. Usually, the strategy of avoiding negative
knowledge in the initial case base is not enough to achieve maximum perfor-
mance for a CBR system. It is usually also necessary to integrate into the
system a repeated maintenance during the problem solving process. There are
several methods that fulfill these requirements, like competence-preserving dele-
tion [Smyth and Keane, 1995], failure-driven deletion [Portinale et al., 1999], as
well as for generating compact case memories [Smyth and Mckenna, 2001]. More
close to our proposal are the one that examines the benefits of using fine-grained
performance metrics to guide case addition or deletion [Leake and Wilson, 2000].

Previously to this paper, we have presented different approaches to case base
maintenance [Salamó and Golobardes, 2003] in acquisition stage that allow us

to reduce the case base in a controlled way and, at the same time, maintain the
efficiency in the CBR system. Although our objectives had been achieved, our
previous conclusions and the research on the area move us to go deeply into an
extended treatment of the case base.

This paper introduces a dynamic case base maintenance (DCBM) model that
updates the knowledge (case base in CBR) based on the learning problem solv-
ing process. The knowledge update is based on Reinforcement Learning. This
approach can be considered as a ”wrapper” model to case base maintenance.
However, the authors propose it as a dynamic model because it depends com-
pletely on the problem solving process of the CBR system.

The paper is organized as follows. In section 2 we introduce the dynamic
case base maintenance model and then different policies to apply it. Section 3
details the fundamentals of our experiments. Next section shows and analyzes
the effectiveness of the model with the experimental results. Finally, we present
the conclusions and further work.

2 Dynamic Case Base Maintenance

The foundation of our Dynamic Case Base Maintenance (DCBM) proposal is
Reinforcement Learning. So, first we summarize its basis. Next, we describe how
to use the Reinforcement Learning in our system, how the coverage of a CBR
system can be modelled, and how different policies can exploit this model to
perform a dynamic experience update able to control and optimize the case base
while solving new cases.

2.1 Reinforcement Learning

Reinforcement Learning (RL) [Sutton and Barto, 1998] combines the fields of
dynamic programming and supervised learning to yield powerful machine-learning
systems. Reinforcement Learning appeals to many researchers because of its gen-
erality.

Reinforcement Learning [Harmon, 1996] is an approach to learning by trial
and error in order to achieve a goal. A RL algorithm does not use a set of in-
stances which show the desired input/output response, as do supervised learning

techniques. Instead, a reward given by the environment is required. This reward
evaluates the current state of the environment. The Reinforcement Learning

Problem (RLP) consists of maximizing the sum of future rewards. The goal to
be accomplished by RL is encoded in the received reward. To solve the problem,
a RL algorithm acts over the environment in order to yield maximum rewards.
Any algorithm able to solve the RLP is considered a RL algorithm.

Reinforcement Learning theory is usually based on Finite Markov Decision

Processes (FMDP). The use of FMDP allows a mathematical formulation of the
RLP, therefore, the suitability of RL algorithms can be mathematically proved.

Several elements appear in all RLPs. In each iteration the RL algorithm
observes the state st of the environment and receives the reward rt. The reward

is a scalar value generated by the reinforcement function which evaluates the
current state and/or the last executed action according to RLP. Following the
rules of the RL algorithm, it generates an action at. The environment reacts to
the action changing state st and generating a new state st+1 . The value function

contains the expected sum of future rewards. This function is used and modified
by the RL algorithm to learn the policy function. A policy function indicates the
action to be taken at each moment.

Initially, the approximation of the optimal value function is poor. Therefore,
it is necessary to approximate the value function at every iteration. There are
several methods that can be applied.

In order to find the optimal value functions, the Bellman equation is applied:
V ∗(Xt) = r(Xt) + γV ∗(Xt+1) , where V ∗(Xt) is the optimal value function; Xt

is the state vector at time t; Xt+1 is the state factor vector at time t + 1; r(Xt)
is the reinforcement function and γ is the discount factor in the range [0, 1].

2.2 Dynamic case base maintenance model

There are several methodologies to solve the RLP formulated as a FMDP: dy-
namic programming, temporal difference algorithms and monte-carlo methods.
We will use a Monte-Carlo method because is the only one that use experience
of the environment to learn the value functions.

The question that arises now is how this idea can be applied to our model.
Lets consider the model by analogy of the elements described in section 2.1. For
our purpose a state st is a case of the environment that receives a reward rt.
The reward is a value generated by the reinforcement function which evaluates
if the current state classifies or not classifies correctly. In our model the rein-

forcement function is the revise phase of the CBR cycle. Following the rules of
the RL algorithm, which includes the case base maintenance policy, it generates
an action at. The action for us is to delete or to maintain a case from the case
base. The environment is the CBR cycle. The environment reacts to the action
changing to state st+1, if the action is to delete the case. Thus, reducing the
case base. The environment also generates a new reward after the problem solv-
ing process which has used the possibly reduced case base. The value function

contains the expected sum of future rewards. This function is used and modified
by the RL algorithm to learn the optimal case base. We test two different policy
functions. Figure 1 shows the description of all the process. In our case, the RL
algorithm receives a set of states and a reward for each one, and returns to the
environment a set of actions.

Definition 1 (Coverage)
Let T = {t1, t2, ..., tn} be a set of training cases, ∀ ti ∈ T : Coveragek(ti) will be

the value of the metric used by the case base maintenance method at iteration k.

The coverage is the goodness value of a case when it is used to solve a target
problem. It can be defined in several ways depending on the case base mainte-
nance techniques used. For instance, it can be defined [Smyth and Keane, 1995]
as the set of target problems that it can be used to solve. Here, we modify slightly

the definition in order to adapt it to our model. The coverage is defined as the
initial sum of future rewards using a Rough Sets measure. That is, Coveragek(ti)
is the value function at iteration k for state ti.

Environment (CBR)

RL algorithm

de
la

y

actions
 a
t

reward
 r
t

state
 s
t

s
t+1

r
t+1

Fig. 1. Relation between RL algorithm and the environment.

As detailed previously, the most important part of the RL algorithm is to
update the value function. We use a Monte-Carlo (MC) which interacts with
the environment following a particular policy function. In our model it is the
optimizer of the case base. When the episode finishes, the MC algorithm updates
the value of all visited states based on the received rewards. The visited states for
a CBR cycle will be the kNN cases retrieved to solve the new problem. Equation
1 shows the general update rule to estimate the state-value function. Our MC
algorithm is detailed in definition 2.

Definition 2 (CoverageUpdate)
Let T = {t1, t2, ..., tn} be a set of KNN cases, ∀ ti ∈ T :

Coveragek+1(ti)← Coveragek(ti) + α · |Rt − Coveragek(ti)| (1)

It can be observed that the current prediction of the state-value Coveragek(ti)
is modified according to the received sum of rewards Rt. The Rt value is 1.0 if the
state ti solve the target problem, otherwise it is 0. There is also a learning rate
α which averages the values obtained in different episodes. The learning rate is
usually set up to value 0.1 or 0.2 in RL systems. If the states are updated quite
often it is set up to value 0.1, otherwise to 0.2. The selection of KNN neighbors
in a CBR cycle may not often be repeated, so we have set up this learning rate
to 0.2 in order to accelerate the differences of Coverage in few iterations.

Once described our value function update, we describe entirely the dynamic
case base maintenance (DCBM) model in algorithm 1, which shows that the
retrieval phase selects K Nearest-Neighbors, although it uses the best neighbor
to solve the new problem. We consider the selection of KNN in order to accelerate
the maintenance process of the case base. Another important point is the relation
of the retain stage with the RL algorithm (step 9 and 10) in algorithm 1. The
retain phase receives the set of actions to improve the case base.

The most notable aspect of the dynamic case base maintenance process is
that the CBR system improves the case base using its problem solving process.
Moreover, the case base improves or degrades the coverage of a case depending

Algorithm 1 Dynamic Case Base Maintenance (DCBM) model

DCBM (CaseMemory T)
1. Initialize Coverage(ti) using a CBM metric in acquisition stage, for all ti ∈ T
2. Tk+1 ← Reduce the initial case base Tk using Coverage
3. Repeat until problem solving process of the CBR cycle is not finished
4. Tk ← Tk+1

5. Retrieval phase ← selects from Tk the KNN used to solve the new problem
6. Reuse phase ← selects the best 1NN to solve the new problem
7. Revise phase ← computes the rewards Rt of the KNN
8. Retain phase ← computes :
9. CoverageUpdate ← for each ti ∈ KNN

10. Apply case base maintenance policy function to decide the set of Actions A
11. Tk+1 ← Update case base Tk based on the Actions A

on their resolution accuracy. Thus, the case base can be categorized at different
levels of coverage. The lower the coverage of a case, the most appropriate to
disappear from the case base.

2.3 Dynamic Case base Maintenance policy functions

The core of the RL process is the case base maintenance policy function. We
describe two different policies to test the reliability of the proposed Dynamic
Case Base Maintenance (DCBM) model.

RLOLevel This policy is called Reinforcement Learning Oblivion policy by
Level of Coverage (RLOLevel). This policy uses a similar philosophy that our
acquisition [Salamó and Golobardes, 2003] case base maintenance method called
ACCM. If we start from the premise that ACCM works well to reduce the case
base while maintaining the prediction accuracy, it leads us to believe that the
same process will be useful for dynamic maintenance. Thus, the complete process
is detailed in algorithm 2.

Algorithm 2 RLOLevel

1. SelectCasesRLOLevel (CaseMemory T)
2. confidenceLevel = 1.0 and freeLevel = ConstantTuned (set at 0.01)

3. select all instances ti ∈ T as SelectCase(ti) if ti satisfies:
coverage(t) ≥ confidenceLevel

4. while not ∃ at least a ti in SelectCase for each class c that class(ti) = c
5. confidenceLevel = confidenceLevel - freeLevel
6. select all instances ti ∈ T as SelectCase(ti) if ti satisfies:

coverage(ti) ≥ confidenceLevel
7. end while
8. Action A is to delete from CaseMemory T the set of cases NOT selected as SelectCase
9. return Action A

The algorithm 2 tries to remove as much cases as possible. Therefore, the
selection process is repeated until it accomplishes that every distribution class
contains at least one case selected. Thus removing from case base those cases
not selected. It is clear that this process will be very aggressive with the case
base because it maintains the minimum description of the case base. It leads
us to believe that this policy function may not work properly in a dynamic
environment.

RLOCE This policy is called Reinforcement Learning Oblivion by Coverage
and Error (RLOCE). The coverage is the relevance of a case. This policy shows
the simplest way to decide the actions.

Algorithm 3 RLOCE

1. SelectCasesRLOCE (CaseMemory T)
2. for each instance t ∈ T
3. if coverage(t) < initialCoverage(t) then SelectCase(t) end if
4. Action A is to delete those cases selected
5. return Action A

The policy is based on coverage lost. A case will be deleted if it classifies
incorrectly new problems more often than correctly. Thus, the cases that produce
misconception are deleted.

3 Description of the experimental analysis

This section is structured as follows: first of all, it is important to understand
the fundamentals of our metric to initialize the coverage of a case. Then, we de-
scribe the testbed used and its characteristics. Finally, we analyze with different
experiments the dynamic case base maintenance model.

3.1 Fundamentals

The rough sets theory defined by Pawlak, which is well detailed in [Pawlak, 1982],
is one of the techniques for the identification and recognition of common pat-
terns in data, especially in the case of uncertain and incomplete data. The math-
ematical foundations of this method are based on the set approximation of the
classification space.

Each case is classified using the elementary set of features which can not be
split up any further, although other elementary sets of features may exist. In
the rough set model the classification knowledge (the model of the knowledge)
is represented by an equivalence relation IND defined on a certain universe
of cases U and relations (attributes) R. The pair of the universe cases U and
the associated equivalence relation IND forms an approximation space. The
approximation space gives an approximate description of any subset X of U .
Two approximations are generated by the available data about the elements of
the set X, called the lower and upper approximations. The lower approximation

RX is the set of all elements of U which can certainly be classified as elements
of X in knowledge R. The upper approximation RX is the set of elements of U

which can possibly be classified as elements of X, employing knowledge R. In
order to discover patterns of knowledge we should look for the minimal set of
attributes that discerns cases and classes from each other, such a combination
is called a reduct.

Measure of relevance based on Rough Sets The reduced space, composed
by the set of reducts (P) is used as a metric to extract the relevance of each
case.

Definition 3 (Coverage based on Rough Sets)
This metric uses the quality of classification coefficient, computed as:

∀ ti ∈ T it computes : Coverage(ti) =
card (P (ti)) ∪ card (−P (ti))

card (all instances)
(2)

Where Coverage(ti) will be the coverage of case ti; T is the training set; card

is the cardinality of a set; P is a set that contains the reducts; and finally P (ti) and

P (ti) is the presence of ti in the lower and upper approximation respectively.

The Coverage coefficient expresses the percentage of cases which can be
correctly classified employing the knowledge t. This coefficient has a range of
real values in the interval [0.0, 1.0]. Where 0.0 and 1.0 mean that the case is
internal and outlier respectively.

We will use the Coverage as initialCoverage in our DCBM model. We also
use the Coverage in our reduction technique (ACCM) in acquisition stage. Our
experiments analyze the behaviour of DCBM model in front of ACCM. Our
RLOLevel policy function is based on this algorithm. We apply ACCM in the
training case base to select a range of cases that have to be deleted from the
case base [Salamó and Golobardes, 2003]. ACCM maintains all the cases that
are outliers, so cases with a Coverage = 1.0 value, and those cases that are
completely internal, so cases with a Coverage near 0.0. Thus, reducing from the
case base those cases that are not outlier and have a coverage near 1.0.

Using coverage values, we have two kind of cases relevant in the case base:
the ones with coverage value of 1.0 (outliers) and the internal cases, having low
coverage value. This coverage distribution is not much suitable for the RL policy
functions which rely on high coverage values. Thus, we modify, previously to
update phase and independently if we have applied ACCM or not, the coverage

value with this formula: Coverage(t) = 1 − Coverage(t), with the exception
of outlier cases that have a Coverage(t) = 1.0. Therefore, we obtain coverage

values that show relevance according to RL policy functions.

3.2 Testbed

The evaluation performance of the approaches presented in this paper is done
using different datasets which are detailed in table 1. Datasets can be grouped in:
public [Merz and Murphy, 1998] and private [Golobardes et al., 2002] that comes
from our own repository. These datasets were chosen in order to provide a wide
variety of sizes, combinations of feature types, and difficulty because some of
them contain a great percentage of inconsistencies.

The percentage of correct classifications and the percentage of case base main-
tained has been averaged over stratified ten-fold cross-validation runs. To
study the performance we use paired t-test on these runs.

Table 1. Details of the datasets used in the experimental analysis

Dataset Ref. Samples Num. feat. Sym. feat. Classes %Inconsistent

1 Balance scale BL 625 4 3 2 2.0
2 Breast cancer Wisconsin BC 699 9 - 2 0.30
3 Credit-A CA 690 5 9 2 9.71
4 Heart-H HH 294 6 7 5 20.4
5 Heart-Statlog HS 270 13 - 2 0.0
6 Hepatitis HP 155 6 13 2 0.0
7 Horse-Colic HC 368 7 15 2 5.67
8 Ionosphere IO 351 34 - 2 0.0
9 Iris IR 150 4 - 3 0.0
10 Labor LB 57 8 8 2 0.0
11 Mammogram (private) MA 216 23 - 2 5.00
12 Soybean SY 683 - 35 19 10.08
13 TAO-Grid (private) TG 1888 2 - 2 0.0
14 Vehicle VE 846 18 - 4 0.0
15 Vote VT 435 - 16 2 4.13

The study described in this paper was carried out in the context of our CBR
system: BASTIAN (case-BAsed SysTem for classIficAtioN). All techniques
were run using the same set of parameters for all datasets: The case base is a list
of cases. Each case contains the set of attributes, the class, the Coverage and
the initialCoverage. Furthermore, the retrieval phase extracts the K-Nearest
Neighbor to be updated in the RL process, not for the reuse phase which uses a
1-Nearest Neighbor. We do not learn new cases during problem solving stage.

4 Analysing the DCBM policy functions

First of all, we test our DCBM policy functions using all the training set in front
of 1NN algorithm and our reduction algorithm (ACCM) in acquisition stage (see
columns 2 to 9 in table 2). We introduce in this experiment ACCM algorithm
in order to compare the case base reduction (size) with our DCBM policies.

We observe that the best prediction accuracy is often obtained using oblivion
by level of coverage (OL) and oblivion by coverage and error (OCE). Looking
at ACCM algorithm, it has greater reduction than 1NN. In spite of the fact the
reduction of DCBM policies is not as great as ACCM, because its selection to
delete is founded on the KNN selected, they produce a good balance between re-
duction and improvement of prediction accuracy. That is, they are less aggressive
reducing the case base than ACCM.

There is a clear conclusion: if we prefer to reduce the case base while maintain-
ing the prediction accuracy of the system, it is better to use DCBM model than
ACCM applied only during acquisition. Once analysed DCBM model alone, we
test the combination between acquisition (ACCM) and learning (DCBM) stages
at the same time.

Table 2 shows (from column 10 to 15) the results of such combination. In this
case, the ACCM final case base will be the initial one for the DCBM policies.
Before examining this question in detail, let us notice that there are two results to
highlight: the percentage of cases maintained by our DCBM policies and the final
case base size when finishing both processes. The percentage of cases maintained

during oblivion (obliv) is computed using this formula #finalcases
#finalcasesACCM

× 100,
which shows the behavior of the DCBM policies. The percentage of final case
base size (size) shows the percentage of case base maintained from the original
training set, it is computed using this formula #finalcases

#traincases
× 100.

Table 2. Results for all methods using an update parameter KNN = 5 Av1 shows the mean value
for all datasets. We use paired t-test at the level of 5% significance, where a • and a ◦ stand for a
significant improvement or degradation of DCBM policies and ACCM to 1NN

Ref cbr cbm cbr cbr cbm cbm
1NN size ACCM size OL size OCE size OL obliv size OCE obliv size

BL 76.15 100.0 77.27 •97.44 78.73 •88.69 78.73 •88.69 78.11 85.89 83.69 79.04 • 90.25 87.94
BC 95.86 100.0 95.43 77.36 95.99 67.93 95.99 97.61 96.26 38.79 30.01 95.98 96.67 74.78
HC 73.36 100.0 70.91 ◦86.14 81.24•88.79 81.24•88.79 81.24• 81.49 70.19 80.16 • 88.53 76.26
CA 81.76 100.0 82.19 84.30 82.63 89.40 82.63 89.40 82.47 86.80 73.17 82.47 87.35 73.63
MA 63.93 100.0 64.53 89.19 62.11 51.44 63.39 77.77 55.88 ◦ 7.55 6.73 64.91 78.95 70.42
TG 96.13 100.0 96.13 95.87 96.66 97.44 96.66 97.44 63.92 ◦ 0.23 0.22 96.60 97.72 93.69
HH 72.82 100.0 72.12 85.63 75.56 •87.86 75.56 •87.86 75.19 14.38 12.32 76.23• 88.12 75.47
HS 74.07 100.0 75.55 79.67 74.81 86.74 74.81 86.74 75.18 29.28 23.33 77.03 85.27 67.94
HP 77.99 100.0 77.33 87.67 78.58 87.67 78.58 87.67 74.75 47.83 41.93 77.87 86.09 75.48
IO 86.92 100.0 87.20 83.79 87.74 91.45 87.74 91.45 88.01 54.25 45.45 87.74 91.16 76.38
IR 95.33 100.0 96.66 89.03 95.33 97.03 95.33 97.03 91.33 ◦ 8.56 7.63 96.00 97.60 86.96
LB 83.38 100.0 83.04 77.38 87.04 88.50 87.04 87.91 81.14 52.14 40.35 86.47 86.65 67.05
SY 82.15 100.0 83.83 •78.38 87.15 •92.09 87.28•91.65 86.22 • 87.96 68.94 86.22 • 88.58 69.43
VE 69.43 100.0 68.13 72.36 69.53 80.33 69.53 80.33 68.36 67.40 48.77 68.38 72.23 52.27
VT 86.65 100.0 90.78 •79.23 92.60 •95.47 92.60 •95.47 91.96 • 40.39 32.00 92.86• 95.03 75.30
Av 81.06 100.0 81.40 84.22 83.04 86.05 83.14 89.72 79.33 46.82 38.98 83.19 88.68 74.86

We concentrate on different observations in table 2 that allow us to express
points in favour of the DCBM model.

– Reduction of the case base during the acquisition stage is not enough. As
the results show in ACCM column and we have also noticed previously, it is
necessary to delete ”harmful” knowledge during the problem solving process.

– The DCBM using the problem solving process helps the system to obtain a
more accurate and reduced case base.

– The reduction obtained using DCBM augment the prediction accuracy of
standard 1NN algorithm, with the exception of the combination between
ACCM and OL. The combination does not work because it is too much
aggressive with the case base, as expected previously when defined.

– On the other hand, OL works properly if it is not combined with ACCM,
even though it has a great reduction policy to select the cases for being
removed from the case base. In conclusion, OL can be only applied alone.

– The combination of ACCM with OCE does not improve often the perfor-
mance of OCE applied alone. However, the combination has a higher re-
duction than OCE alone and also improves on average previous prediction
accuracy.

5 Conclusions

This paper proposes a model for case base maintenance that uses the dynamics of
the problem solving process to search for the optimal case base while maintaining
the prediction accuracy. The experimental study demonstrates that the DCBM

model using different policies manage to get the initial objectives: it optimizes
the case base while it improves on average the prediction accuracy of the system.
Our further work will be focused on testing the model in recommender systems
in order to analyze a dynamic environment with our dynamic model. We also
think of testing different case reduction methods on acquisition stage.

Acknowledgements This work is supported by the Ministerio de Ciencia y Tec-

nologia, Grant No. TIC2002-04160-C02-02. We wish to thank Enginyeria i Arquitectura

La Salle - Ramon Llull University for their support to our Research Group.

References

[Golobardes et al., 2002] Golobardes, E., Llorà, X., Salamó, M., and Mart́ı, J. (2002).
Computer Aided Diagnosis with Case-Based Reasoning and Genetic Algorithms.
Knowledge-Based Systems, (15):45–52.

[Harmon, 1996] Harmon, M. (1996). Reinforcement learning: A tutorial.
[Leake and Wilson, 2000] Leake, D. and Wilson, D. (2000). Remembering Why to

Remember: Performance-Guided Case-Base Maintenance. In Proceedings of the Fifth

European Workshop on Case-Based Reasoning, pages 161–172.
[Markovitch, S. and Scott, P.D., 1988] Markovitch, S. and Scott, P.D. (1988). The

Role of Forgetting in Learning. In Proceedings of the Fifth International Conference

on Machine Learning, pages 459–465.
[Merz and Murphy, 1998] Merz, C. J. and Murphy, P. M.

(1998). UCI Repository for Machine Learning Data-Bases
[http://www.ics.uci.edu/∼mlearn/MLRepository.html]. Irvine, CA: University

of California, Department of Information and Computer Science.
[Minton, 1985] Minton, S. (1985). Selectively generalizing plans for problem solving.

In Ninth International Joint Conference on Artificial Intelligence, pages 596–599.
Morgan Kaufmann.

[Pawlak, 1982] Pawlak, Z. (1982). Rough Sets. In International Journal of Information

and Computer Science, volume 11.
[Portinale et al., 1999] Portinale, L., Torasso, P., and Tavano, P. (1999). Speed-up,

quality and competence in multi-modal reasoning. In Proceedings of the Third Inter-

national Conference on Case-Based Reasoning, pages 303–317.
[Salamó and Golobardes, 2003] Salamó, M. and Golobardes, E. (2003). Hybrid Dele-

tion Policies for Case Base Maintenance. In Proc. of the sixteenth International

FLAIRS Conference, pages 150–154. AAAI Press.
[Scott, 1983] Scott, P. (1983). Learning: The construction of a posteriori knowledge

structures. In Proceedings of the Third National Conference on Artificial Intelligence.
[Smyth and Keane, 1995] Smyth, B. and Keane, M. (1995). Remembering to forget:

A competence-preserving case deletion policy for case-based reasoning systems. In
Proceedings of the Thirteen International Joint Conference on Artificial Intelligence,
pages 377–382.

[Smyth and Mckenna, 2001] Smyth, B. and Mckenna, E. (2001). Competence Models
and the maintenance problem. Computational Intelligence, 17(2):235–249.

[Sutton and Barto, 1998] Sutton, R. and Barto, A. (1998). Reinforcement Learning.

An introduction. The MIT Press.

