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The problem: general setting

Let H0(ν) = H0(ν, x1, x2, y1, y2) be a one-parameter ν-family of 2-dof

Hamiltonian systems such that

1. the origin is a fixed point for all ν,

2. at ν = 0 the origin suffers a Hamiltonian-Hopf bifurcation, and

3. for ν > 0 the invariant manifolds of the origin (complex unstable) form a

“homoclinic 2-dimensional figure-eight”.

We consider

a periodic in time forcing H = H0(ν) + ǫH1 (ǫ small and fixed) on the family

(hence 2+1/2 dof Hamiltonian system).

Our goal is

to describe the asymptotic behaviour (when ν → 0) of the splitting of the

invariant manifolds.
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The concrete system

Concretely, we consider the system

H(x1, x2, y1, y2, t) = H0(x1, x2, y1, y2) + ǫH1(x1, x2, y1, y2, t),

where

H0 = x1y2 − x2y1 + ν

(

x21 + x22
2

+
y21 + y22

2

(

−1 + y21 + y22
2

))

,

and

H1 =
y51

(d− y1)(c− cos(θ))
, θ = γt+ θ0.

1. We shall fix concrete values of c, d, γ and ǫ.

2. ν > 0 is a perturbative parameter.

3. The parameter θ0 ∈ [0, 2π) is the initial time phase.

4. Note that H1 contains all powers yk1 , k > 4 and all harmonics in θ. p.3/24



Why this concrete system? H0?

Consider a 1-param. family of 2-dof Hamiltonians Hδ undergoing a

Hamiltonian-Hopf bifurcation (at the origin).

Assume: for δ > 0 elliptic-elliptic, δ < 0 complex-saddle.

The NF analysis of the HH bifurcation leads to the so-called Sokolskii NF:

NF(Hδ) = ωΓ1 + Γ2 +
∑

k,l,j≥0
k+l≥2

ak,l,j Γ
k
1 Γ

l
3 δ

j, ← formal

where

Γ1 = x1y2 − x2y1, Γ2 = (x21 + x22)/2 and Γ3 = (y21 + y22)/2.

Γ1 is a (formal) first integral, hence W u/s(0)={Γ1=0} ∩ {NF(Hδ)=0}.

• If a0,2,0 > 0 they bound a finite domain of size Γ2 = O(δ2),Γ3 = O(δ).
• If a0,2,0 < 0 they are unbounded. p.4/24



The unperturbed model: H0

We consider the bounded case.

Introducing δ = −ν2, and rescaling xi = ν2x̃i, ωyi = ν ỹi, i = 1, 2,

ωt = t̃, one has (skipping ˜ from the new variables)

NF(Hδ) = Γ1 + ν
(

Γ2 + aΓ3 + ηΓ2
3

)

+O(ν2)

where a = −a0,1,1/ω2 and η = a0,2,0/ω
4.

Taking a = −1, η = 1, and truncating we obtain the unperturbed integrable

system considered:

H0 =x1y2 − x2y1 + ν

(

x21 + x22
2

+
y21 + y22

2

(

−1 + y21 + y22
2

))

=Γ1 + ν(Γ2 − Γ3 + Γ2
3).

Then, G1 = Γ1 and G2 = Γ2 − Γ3 + Γ2
3 are independent first integrals.
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Geometry of the invariant manifolds for H0

In polar coord x1+ ix2=R1e
iψ1 , y1+ i y2=R2e

iψ2 the restriction to

(R1, R2)-components is a Duffing Hamiltonian system.

R2

DuffingR1

On W u/s(0) one has ψ1 = ψ2 ± π, ψ2 = t+ ψ0. The 2-dimensional

homoclinic surface is foliated by homoclinic orbits (x1(t), x2(t), y1(t), y2(t)) given

by

x1(t) + i x2(t)=−R1(t)e
iψ(t), y1(t) + i y2(t)=R2(t)e

iψ(t),

being ψ(t) = t+ ψ0, R1(t) =
√
2 sech(νt) tanh(νt), and R2(t) =

√
2 sech(νt).
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Periodic forcing: ǫH1

We add to H0 the periodic perturbation ǫH1 = ǫg(y1)f(θ) where

g(y1) = y51(d− y1)−1, f(θ) = (c− cos(γt+ θ0))
−1.

Remarks:

1. Restricted to the unperturbed W u/s(0), y1 becomes 1-periodic in t.

2. f(θ) periodic in t with frequency γ⇒ If γ ∈ R \Q then quasi-periodic!

We consider for numerical simulations c = 5, d = 7, and ǫ = 10−3.

Also γ = γ0 = (
√
5− 1)/2 (later other values of γ).

Recall that (ψ0, θ0) are initial conditions on a fundamental domain (torus T )

of W u/s(0). Also recall that ν is a small parameter (included in H0).
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The invariant manifolds W u/s(0)

We express H0 = G1 + νG2, G1=Γ1, G2=Γ2−Γ3+Γ2
3,

and we consider the Poincaré section Σ = max(R2).

The values are represented as functions of (ψ, θ).
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 0  1  2  3  4  5  6  0  1  2  3  4  5  6
-0.0002

-0.0001

 0

 0.0001

 0.0002

 0  1  2  3  4  5  6  0  1  2  3  4  5  6
-0.00025

-0.0002

-0.00015

-0.0001

 0  1  2  3  4  5  6  0  1  2  3  4  5  6-0.0002

-0.0001

 0

 0.0001

 0.0002

 0  1  2  3  4  5  6  0  1  2  3  4  5  6

-0.0007

-0.00069

-0.00068

-0.00067

G1-graph G2-graph

ν = 2−4

ν = 2−6

p.8/24



The splitting of the invariant manifolds
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Remarks on the previous computations

1. We propagate a set {ψ0,k, θ0,j}, 0 ≤ k, j ≤ 512, of initial points in the

fundamental torus T (i.e. a total number of 218 initial conditions) up to

reach the Poincaré section Σ.

2. The numerical integration is performed using an ad-hoc implemented

Taylor time-stepper scheme with quadruple precision.

3. The propagation of T up to Σ gives a 2D torus TΣ. The invariant manifolds

W u/s(0) in R4 are defined by the G1 and the G2-graphs over TΣ.

4. To compute the difference (i.e. the splitting) between W u(0) and W s(0)

we need to compare them at the same points of TΣ. Hence, we select a

mesh of angles ψ and θ within TΣ, and refine the initial conditions in T
using a Newton method.
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Nodal lines: changes of the dominant harmonic
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Change of dominant harmonics

− log2 ν+ − log2 ν− Change of the dom harm of the G1, G2-splittings

2.443 2.444 (1,0), (1,0)−→ (1,1), (1,0)

2.676 2.677 (1,1), (1,0)−→ (1,1), (1,1)

4.112 4.113 (1,1), (1,1)−→ (1,2), (1,1)

4.300 4.301 (1,2), (1,1)−→ (1,2), (1,2)

5.133 5.134 (1,2), (1,2)−→ (2,3),(1,2)

5.428 5.429 (2,3), (1,2)−→ (2,3), (2,3)

5.971 5.972 (2,3),(2,3)−→ (3,5), (2,3)

6.234 6.235 (2,3), (2,3)−→ (3,5), (2,3)

Table 1: Changes in the dominant harmonic of the G1 splitting function and the G2 splitting

function. The change takes place for ν ∈ (ν
−
, ν+). p.12/24



The Melnikov integral

For simplicity, we discuss on the G1-splitting (similar for the G2-splitting).

Recall that H1 = g(y1)f(θ) where

g(y1) = y51(d− y1)−1
❀ g′(y1) =

∑

k≥0 dky
4+k
1 ,

f(θ) = (c− cos(θ))−1 =
∑

j≥0 cj cos(jθ).

The P-M function:

If ζ0(s) is a solution of the system when ǫ = 0, then the distance

Gu
1(ψ0, θ0)−Gs

1(ψ0, θ0) = ∆G1 +O(ǫ2),
is given by

∆G1 = ǫ

∫ ∞

−∞
{G1, H1} ◦ ζ0(s) ds+O(ǫ2)

= 4ǫ

∫ ∞

−∞
sin(t+ ψ0) f(γt+ θ0)

∑

k≥0

√
2k+1 dk (cos(t+ ψ0))

4+k

(cosh(νt))5+k
dt.

Recall that on the unperturbed separatrices ψ= t+ψ0, θ=γt+θ0, (ψ0, θ0)∈T . p.13/24



Comparison numerics/symbolic evaluation

After some algebra one obtains

∆G1=ǫ
∑

j≥0

cj
∑

k≥0

2
3+k

2 dk
∑

0≤2i≤4+k

b4+k,i
∑

l=±1

I1 sin((k+5−2i)ψ0+ljθ0)

= ǫ
∑

m1≥0

∑

m2∈Z

C(1)
m1,m2

sin(m1ψ0 −m2θ0), where

I1=I1(k+5−2i+ljγ, ν, k+5), I1(s, ν, n)=

∫

R

cos(st)

(cosh(νt))n
dt, bm,i=

m+1−2i

2m(m+1)





m+1

i
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We represent log(∆Gi/ǫ)
√
ν, for i= 1 (bottom)

and i=2 (top), as a function of log2(ν).

Red: Direct numerical computations.

Blue: Sum of the significant terms of the Melnikov

series.
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Main theoretical result

For the system H = H0 + ǫH1 under consideration, let us assume that

ǫ > 0, c > 1, d >
√
2, γ ∈ R \Q and ν < νM ≪ 1.

Let m1/m2 be an approximant of γ, and let cs ∈ R be the constant such that

csm1|m1 − γm2| = 1.

Thm. There exists a “universal” (almost independent of γ) function ψ1(L) s.t.

the contribution of the harmonic associated to m1/m2 to the splitting satisfies

ψi(L)|L=csνm2
1
≈ √csν log |C(i)

m1,m2
|, when ν → 0,

where Ψ2(L) = Ψ1(L)−
√
L logL/m1, Ψi(L) ≤ ΨM ≈ −4.860298.

In particular, if m1/m2 corresponds to a dominant HBA of ∆G1 (resp. ∆G2)

for ν ∈ (ν0, ν1), ν0, ν1 ≪ 1, then

∆Gi ≈ exp
(

ψi(L)|L=νm2
1cs
/
√
ν
)

, i = 1, 2,
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Changes of the dominant harmonic
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For γ = (
√
5− 1)/2, ǫ = 10−4 we represent

√
ν log |C(1)

m1,m2/ǫ| as a

function of log2(ν). The points correspond to the values νj where changes

the dominant harmonic. As expected, dominant harmonics are associated to

BA: from m1 = Fj → Fj+1, where {Fj}j denotes the Fibonacci sequence.

The rightmost change corresponds to m1 = 55→ m1 = 89, while the

leftmost to m1 = 196418→ m1 = 317811.
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The function ψ1(L)

We have an explicit expression of ψ1(L). For γ = (
√
5− 1)/2 one has

cs ≈
√
5(1 + γ). Denote by L̃ = L/cs.
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Left: Five leftmost picks of the previous fig. as a function of L̃ (in red).

The function ψ1(L̃) is diplayed in blue.

Right: Magnification of the central zone of the left plot.

The red curves tend to ψ1(L̃) as ν decreases (and m1 increases).
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Other frequencies: BA and hidden BA (HBA)
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We display
√
ν(log(∆G1)/ǫ) as a function of log2(ν).

Top left : γ0 = (
√
5− 1)/2 = [0; 1, 1, 1, 1, 1, ...] ≈ 0.618033988749894.

Top right : γ1 = [0; 10×1, 1, 10, 1, 1, 10, 1, 1, 10, 1, ...] ≈ 0.618051226819253.

Bottom left : γ2 = [0; 10×1, 1, 10, 1, 10, 1, 10, 1, 10...] ≈ 0.618051374461158.

Bottom right: γ3 = [0; 10×1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...] ≈ 0.618020663293438.
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Hidden HBA: questions and assumptions

As said it is reasonable to expect that BA are dominant. But...

1. γ2 has some hidden BA harmonics (HBA) [Delshams-Gutierrez-Gonchenko 2014]

Q: Why some BA never dominate for any ν? Which conditions satisfy?

2. all frequencies γi, i = 0, 1, 2, 3, shown before are rather “special”.

Q: What is expected for “typical” (full measure set) frequency γ.

Let us assume that (our system satisfies these assumptions):

• The perturbation is the product of two functions f(x1, x2, y1, y2) and

g(θ), denote by P1(t, ψ) and P2(θ) their contribution to the P-M integral.

• The homoclinic conections tend to zero when t→ ±∞ as sech(νt).

• P1(t, ψ) is of the form
∑

Aj(t) sin(jψ), ψ = t+ ψ0, where Aj depend

on powers of sech(t) and ‖Aj‖ ∼ exp(−jρ1), ρ1 > 0,

• P2(θ) is of the form B
∑

j≥1 exp(−jρ2) cos(jθ), θ = γt+ θ0, ρ2 > 0.
p.19/24



Contribution of HBA

Under previous assumptions, one has that minus the logarithm of the

contribution of the harmonic related to the BA Nk/Dk to the P-M function is

T (ν,Dk) ≈ Dk + sk/ν,

where sk = |Nk − γDk| and where we have approximated

Nk = γDk +O(D−2
k ). The role of CFE appears as

s−1
k =Dk

(

c+k + 1/c−k
)

, c+k =[qk+1; qk+2, . . . ], c
−
k =[qk; qk−1, . . . , q1].

We are interested in minimizing T (ν,Dk) for a given ν. The optimal Dk

depends on the arithmetic properties of γ.

Remark:

The frequencies γi, i = 0, 1, 2, verify |p− qγi| ≥ c/qτ , τ ≥ 1, c > 0, and

γ3 satisfies |p − qγ3| ≥ c/(q log q)σ, σ ≥ 1, c ≥ 0 (this explains why the

maxima in the plot increases like log ν).
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Results on HBA for ν small (Dk large)

When T (ν,Dk) = T (ν,Dl) a change of optimal from Nk/Dk to Nl/Dl,

l > k, is produced. This gives νk,l =
sk−sl
Dl−Dk

.
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We display log(T (ν,Dj)), j = k, k+1, k+2, as a function of log(ν). The

k + 1-th BA is hidden. Left: γ = γ2. Right: γ = π − 3.

Thm. 1. Two consecutive harmonics associated to BA cannot be hidden.

2. If the k + 1-th hamonic associated to BA is hidden then qk+2 = 1.
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”Typical” measure-theoretical properties

Properties related to the CFE that hold for numbers in a set of full measure:

• The geometric mean of CFE quotients tends to the Kinchin constant

KC ≈ 2.685452.

• Let Dn the BA denominators. Then

limn→∞ log(Dn)/n→ LC = π2/(12 log(2)) Levy constant.

• The Gauss map x→ 1/x− [1/x] is ergodic and the probability of having

k as a quotient is given by the Gauss-Kuzmin law:

P (k) = log2(1 + 1/(k2 + 2k)). For a “typical” number, its CFE is a

sequence of realizations of not independent iid random variables.

Numerical checks (based on the first≈ 5× 107 first quotients) support that

γ = π − 3, eγ0 , e
√
2 − 4, e

√
3 − 5, e

√
5 − 9, and e

√
7 − 14,

verify the previous “typical” properties. p.22/24



A conjecture on the distribution of HBA

Conjecture: Under the assumptions on the homoclinic and the perturbation

stated, for a set of ratios of two frequencies (1, γ) of full measure, the

distribution of HBA follows a normal law.

Numerical results for the system considered (we show results for γ = π − 3).
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Counting the HBA in blocks of 1000 consecutive BA, we obtain that the CDF is

N(µ, σ) with µ≈279.118 and σ≈9.604 in all cases. That is, for our system

and for a “typical” frequency γ we expect that more than one fourth of the BA

are HBA. E.g. γ=π − 3: 2785810 HBA from the first 107 quotients. p.23/24



What remains?

1. To theoretically justify the first-order Melnikov approach, and explain the

very good agreement between the symbolical and numerical results.

2. To use the results on the splitting to derive a 4D (adapted) separatrix map

(requires the passage time close to the complex-saddle point). Analyze the

geometry of the phase space and the diffusive properties.

3. To carry out the study of the splitting for the 4D symplectic map case

(rational/irrational Krein collision of eigenvalues).

4. ...

Thanks for your attention!!

p.24/24


	The problem: general setting
	The concrete system
	Why this concrete system? $H_0$?
	The unperturbed model: $H_0$
	Geometry of the invariant manifolds for $H_0$
	Periodic forcing: $epsilon H_1$
	The invariant manifolds $W^{u/s}(0)$
	The splitting of the invariant manifolds
	Remarks on the previous computations
	Nodal lines: changes of the dominant harmonic
	Change of dominant harmonics
	The Melnikov integral
	Comparison numerics/symbolic evaluation
	Main theoretical result
	Changes of the dominant harmonic
	The function $psi _1(L)$
	Other frequencies: BA and hidden BA (HBA)
	Hidden HBA: questions and assumptions
	Contribution of HBA
	Results on HBA for $
u $ small ($D_k$ large)
	"Typical" measure-theoretical properties
	A conjecture on the distribution of HBA
	What remains?

