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Abstract

This paper investigates the motion of a small particle moving near the triangular
points of the Earth-Moon system. The dynamics are modeled in the Hill restricted
4-body problem (HR4BP), which includes the effect of the Earth and Moon as in
the circular restricted 3-body problem (CR3BP), as well as the direct and indirect
effect of the Sun as a periodic time-dependent perturbation of the CR3BP. Due
to the periodic perturbation, the triangular points of the CR3BP are no longer
equilibrium solutions; rather, the triangular points are replaced by periodic orbits
with the same period as the perturbation. Additionally, there is a 2:1 resonant
periodic orbit that persists from the CR3BP into the HR4BP. In this work, we
investigate the dynamics around these invariant objects by performing a center
manifold reduction and computing families of 2-dimensional invariant tori and
their linear normal behavior. We identify bifurcations and relationships between
families. Mechanisms for transport between the Earth, L4, and the Moon are
discussed. Comparisons are made between the results presented here and in the
bicircular problem (BCP).

Keywords: Sun-Earth-Moon System, Triangular points, Hill Restricted 4-Body
Problem, Periodically-forced Hamiltonian system
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1 Introduction

The study of dynamics in the Earth-Moon (EM) environment has become the focus
of much research due to the announcement of the lunar gateway placed in a southern
L2 near rectilinear halo orbit (NRHO) [1], as well as nearby orbits used for Artemis
program operations [2]. As the traffic of spacecraft increases for operations near the
Moon, there is an increased need for relay communications between Earth and the
vicinity of the Moon. TYCHO is a proposed mission to provide such communication
relay services via satellites placed near the Earth-Moon L4 libration point–one of
the two so-called triangular points [3]. To model the dynamics in cislunar space, the
circular restricted 3-body problem (CR3BP) is used as a first approximation [4, 5].
In the Earth-Moon CR3BP, the triangular points L4,5 are elliptic equilibria–they are
linearly stable. In fact, it has been shown that there is a region of effective stability
around L4 in the CR3BP [6]. This stability, along with the fact that L4 is equidistant to
the Earth and Moon, presents an ideal region of cislunar space to put communications
satellites.

The presence of the Trojan asteroids near the Sun-Jupiter triangular points has
raised questions about the existence of similar objects in the Earth-Moon system [7].
After all, the triangular points are elliptic in both the Sun-Jupiter and Earth-Moon
CR3BP, and Earth-Moon Trojans could pose a risk of collision with communications
satellites. While it is known that there are no Earth-Moon Trojans, the existence
of Kordylewski dust clouds around EM L4 has recently been confirmed [8, 9]. The
key difference between the Sun-Jupiter and Earth-Moon systems is that there are
no other major perturbing forces in the Sun-Jupiter system, as the Sun and Jupiter
are the two most massive celestial bodies in the solar system, while the Earth-Moon
CR3BP neglects the significant perturbing force of the Sun’s gravity. It has been shown
that accounting for the gravitational effect of the Sun in the Earth-Moon system
qualitatively changes the behavior of L4–its stability changes from elliptic to partially
hyperbolic [10, 11]. Accounting for the Sun’s gravity helps to describe the non-existence
of Earth-Moon Trojan asteroids, and recent work has incorporated additional non-
gravitational perturbations caused by the Sun to help describe the existence of the
Kordylewski clouds from a dynamical astronomy perspective [7, 12]. However, what
are the implications of this qualitative change in dynamical behavior around EM L4

for communications satellites supporting cislunar operations? The present work seeks
to address this question.

The simplest model introducing the periodic forcing of the Sun in the Earth-Moon
system is the bicircular restricted 4-body problem (BCP). This model is formed by
assuming that the Earth-Moon barycenter travels around the Sun in a circular orbit
at a constant rate, while the Earth and Moon move around their barycenter in a cir-
cular orbit. The BCP accounts for the Sun’s gravitational effect on the particle (the
direct effect) but neglects the gravitational effect on the relative motion of the Earth
and Moon (the indirect effect). Due to this, the Sun, Earth, and Moon do not form a
solution to the 3-body problem, hence we say the model is incoherent. Despite its inco-
herence, the BCP captures the qualitative behavior of the periodic solutions around
L4 similarly to its coherent counterpart, the quasi-bicircular restricted 4-body prob-
lem (QBCP), as shown in Figure 28, borrowed from Andreu [13]. There has been some
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investigation into the dynamics around the triangular points in the BCP, namely the
continuation of the L4 point into its periodic counterparts [11], as well as the compu-
tation of quasi-periodic invariant 2-tori in the vertical direction [14]. Moreover, Jorba
investigated the existence of stable motions near the triangular points of the Earth-
Moon system in a high-fidelity ephemeris model, relating to work done in the BCP
[15]. By a similar group of researchers, there has been more investigation modeling
the dynamics affecting the Kordylewski clouds [7]. Along the lines of communications
satellites being placed near L4, some authors have used the BCP as their dynamical
model for transfer design [16, 17].

In this work we use the Hill restricted 4-body problem (HR4BP) to model the
motion of a particle in the Sun-Earth-Moon (SEM) system. The HR4BP is a coherent
periodic Hamiltonian system that is both a generalization of the Earth-Moon CR3BP
and Sun-Earth Hill’s problem [10, 18]. The Sun-Earth-Moon HR4BP is coherent and
models both the direct and indirect effect of the Sun, using a Hill’s variational orbit as
the relative motion of the Earth and Moon to capture the indirect effect. The HR4BP
has been studied minimally in comparison to the BCP and QBCP [10, 18–21], and
the purpose of employing this model in the present work is twofold. On one hand,
only the original Scheeres paper which introduced the HR4BP has an investigation of
the dynamics around EM L4 in this model, and even that analysis is austere. So, we
would like to further our understanding of the dynamics in this region of the phase
space of the system. On the other hand, we would like to compare our results where
applicable with the work previously done in the BCP and extend computations to
include more than what has been done in the BCP to date. Additionally, from an
astrodynamics perspective, transport between Earth and the Moon is of particular
interest, so finding any avenues that exist passing through the triangular points may
have value for transferring a satellite between cislunar regions of interest. Furthermore,
practical stability regions near the triangular points have positive implications for the
observability of spacecraft in cislunar space.

The paper is organized as follows. In Section 2 we review the dynamical model used
in our investigation, including the continuation of equilibria and resonant periodic
orbits near EM L4. In Section 3 we give high-level overviews of the several techniques
employed to study dynamics around the triangular points. Section 4 makes up the
majority of the text, as we detail our findings in the form of families of invariant
tori, a Poincaré section, and transport via hyperbolic invariant manifolds. Finally, we
draw comparisons where applicable between the existing work in the BCP and our
examination of the HR4BP in Section 5.

2 Dynamical Model

2.1 Hill Restricted 4-Body Problem

The HR4BP is a coherent non-autonomous π-periodic generalization of the CR3BP
and the Hill restricted 3-body problem. The derivation of the HR4BP is fully detailed
in [10]. There are three primary assumptions made in the HR4BP: M0 ≫ M1,M2,
where Mi is the mass of each primary body; the mass of the particle is negligible,
i.e., M3 ≪ 1; and the distance between M1 and M2 is much less than their distance
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to M0. In the SEM system, these assumptions are valid, where M0 is the Sun, M1

the Earth, and M2 the Moon. Under these assumptions, the Sun and Earth-Moon
barycenter move in a circular orbit and the relative motion of the Earth and Moon
follows a specific solution to the Hill 3-body problem, a member of a 1-parameter
family of planar periodic orbits known as Hill’s variational orbits.

These periodic orbits depend on a parameter, m, which is the synodic period of
the Earth-Moon orbit in years. Note for the SEM system, we take m = 0.0808. In this
work, we take the reference frame to be the average co-rotating frame of the smaller
two primaries, rotating at a constant rate: 1+1/m, where 1 is the normalized rotation
rate of the Sun and Earth-Moon barycenter frame, and 1/m is the average rotation
rate of the Earth-Moon orbit. In addition to the parameter m, the HR4BP depends
on a second parameter, µ, the mass ratio of the smaller two primaries. Additionally,
we take the following SEM unit normalizations. We normalize the length in the Earth-
Moon frame by the mean distance between the Earth and the Moon (384,400 km).
We normalize time τ such that 2π time units correspond to a synodic month (29.53
days), similar to [20].

To write the equations of motion, we define the conjugate momenta as px = ẋ −
(1 +m)y, py = ẏ + (1 +m)x, and pz = ż. The motion of the infinitesimal particle in
the Earth-Moon rotating frame is then described as Hamiltonian dynamical system
given by:

H =
1

2
(p2x+p

2
y+p

2
z)+

1

2
(1+m)2(x2+y2)+(1+m)(ypx−xpy)−V (x, y, z, τ ;µ,m), (1)

where V (x, y, z, τ ;µ,m) is given by:

V (x, y, z, τ ;µ,m) =
1

2

(
1 + 2m+

3

2
m2

)
(x2 + y2)− 1

2
m2z2

+
3

4
m2
(
(x2 − y2) cos 2τ − 2xy sin 2τ

)
+

m2

a30(m)

(
1− µ

r1−µ
+

µ

rµ

)
,

with r1−µ and rµ given by:

r21−µ =
(
x+ µ(1 + ξ̄)

)2
+
(
y + µη̄

)2
+ z2,

r2µ =
(
x− (1− µ)(1 + ξ̄)

)2
+
(
y − (1− µ)η̄

)2
+ z2,

where ξ̄ and η̄ are the normalized Hill variation orbit [22]:

ξ̄(τ ;m) =

∞∑
n=1

(
an(m)

a0(m)
+
a−n(m)

a0(m)

)
cos 2nτ,

η̄(τ ;m) =

∞∑
n=1

(
an(m)

a0(m)
− a−n(m)

a0(m)

)
sin 2nτ,
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where the coefficients an(m) can be computed following [22]; moreover, we use the
coefficients given in [20]. Note that the equations of motion are π-periodic in τ , which
corresponds to synodic half-month periodicity. Recall that T = 2π

ωS
, so, as the model

is π-periodic, we say that ωS = 2. As a0(m) = m2/3
(
1− 2

3m+O(m2)
)
, we note that

if m→ 0, the Hamiltonian of the restricted three-body problem is recovered.
We will use both the Hamiltonian and Newtonian formulations in this work, so we

present the equations of motion in a Newtonian way:

ẍ− 2(1 +m)ẏ = Vx, ÿ + 2(1 +m)ẋ = Vy, z̈ = Vz, (2)

where V is as defined in the Hamiltonian formulation above.
Finally, we mention several symmetries present in this model. Using the Hill

approximation, the perturbing effect of the Sun is symmetric across the Earth-
Moon barycenter, so the equations of motion are invariant under the transformation
τ 7→ τ+π. Additionally, the Earth-Moon orbit is π-periodic in this frame, so the system
is π-periodic. The equations of motion are unchanged under the transformations:

Sy : (x, y, z, ẋ, ẏ, ż, τ) 7→ (x,−y, z,−ẋ, ẏ,−ż,−τ) (3)

Sz : (x, y, z, ẋ, ẏ, ż, τ) 7→ (x, y,−z, ẋ, ẏ,−ż, τ). (4)

Thus, it suffices to consider the dynamics around L4, as the dynamics around L5 are
obtained by applying the Sy symmetry. Observe that this similar symmetry similarly
holds in the CR3BP.

2.2 Continuation of Equilibria and Resonant Periodic Orbits

The lowest dimensional invariant manifolds in the CR3BP are equilibrium points. We
introduce the π-periodic forcing of the Sun by incrementally increasing m from m = 0
to m = 0.0808, i.e., from the EM CR3BP to the SEM HR4BP. Once the periodic
forcing is added, the equilibria become π-periodic orbits in general. Of course, there
may be bifurcations of this periodic orbit in the continuation process, as seen around
L2 in the HR4BP [19, 21]. We initialize the continuation of the L4 point into its π-
periodic orbit replacement taking x0 = xL4 , i.e., the initial state at τ = 0 is taken
as the CR3BP L4 point. Using a standard single shooting algorithm provides the
differential corrected periodic orbit [23].

Periodic orbits replacing the CR3BP equilibria are not the only periodic solutions
of the periodically-forced system, as CR3BP periodic orbits of a resonant period may
persist. Whereas the initial point at τ = 0 is taken as the equilibrium point, we must
carefully select the initial point for the continuation of a CR3BP periodic orbit into the
HR4BP. In the SEM HR4BP, there is a 2:1 resonant periodic orbit which can be con-
tinued from the EM CR3BP. The 2:1 resonant orbit comes from the 2π-periodic orbit
of the L4 short-period family in the CR3BP. We utilize sub-harmonic Melnikov theory
to predict the points that persist [24]. We utilize the energy principle–the change in
energy from the start and end of a periodic orbit must be zero–following Cenedese and
Haller [25], to construct a Melnikov function necessary for the subharmonic analysis
at hand.
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To introduce the Melnikov used in this analysis, we write the HR4BP in the New-
tonian formulation as r̈ = f(X) + εg(X, τ), where f(X) is the unperturbed system,
g(X, τ) is the π-periodic perturbation, and ε > 0 is small. Expanding the HR4BP
equations of motion about m = 0, we have εg = mg1 +m2g2 +m3g3 + · · · . Brown
et al. articulated that g1 ≡ 0, so we use g2 as the next lowest order perturbation [26].
Repeating the computation of Brown et al., and using α := τ0 + τ , we have:

g2 = 3Ω× r′ +
3

2
f + h2, (5)

h2(X, α) = −3

2

− cos(2α) sin(2α) 0
sin(2α) cos(2α) 0

0 0 −2/3

 r − 1

8
(1− µ)µ

[
P
] −8 cos(2α)

11 sin(2α)
0

 , (6)

[
P
]
=

(
1− µ

R3
1−µ,C

− µ

R3
µ,C

)
[I3×3]−

3

R5
1−µ,C

R1−µ,CR
T
1−µ,C +

3

R5
µ,C

Rµ,CR
T
µ,C ,

(7)

where R1−µ,C and Rµ,C are the relative positions of the particle with respect to the
Earth and the Moon, respectively, in the CR3BP. Originally derived in Brown et al.
[26], the Melnikov function for the 2:1 resonant periodic orbit in the HR4BP then
takes the form:

M(s, τ0) =

∫ 2π

0

h2(X(s+ τ ; ε = 0), τ0 + τ) · r′(s+ τ ; ε = 0) dτ, (8)

where X(s + τ ; ε = 0) is the state along the orbit (where s parameterizes the initial
condition at τ0) in the unperturbed problem. The simple zeros of M represent the
initial points along the orbit where no work is done by non-conservative forces over
the orbit–a criterion for periodicity in the non-autonomous system. The top plot in
Figure 1 shows the Melnikov function evaluated at each point along the 2:1 resonant
orbit in the unperturbed problem. As there are 4 zeros, we continue the periodic orbit
into the HR4BP from these points–observe that they are evenly spaced along the orbit
and that opposite points correspond to the same periodic orbit with a phase shift. The
bottom plot in Figure 1 shows the continuation in m from the EM CR3BP (m = 0)
into the SEM HR4BP (m = 0.0808). Notice that there is a period-doubling bifurcation
between Branches A and B which destroys Branch B. Hence, only Branches A and
C persist in the SEM system. Figure 2 shows the surviving periodic orbits in the
configuration space. We call Branch A the “dynamical equivalent of L4” or DE L4 for
short; we call Branch C the 2:1 resonant orbit.

The periodic forcing of the Sun qualitatively changes the linear normal behavior
of L4. So, we present in Table 1 the stability data of the periodic orbits in the SEM
HR4BP, i.e., the eigenvalues of the monodromy matrices, as well as the stability of
the L4 CR3BP equilibrium point and 2π-periodic orbit. The π-stroboscopic map is
symplectic so the monodromy matrices are symplectic, hence the eigenvalues come in
reciprocal pairs. Observe that the L4 equilibrium point in the EM CR3BP is elliptic.
In the SEM HR4BP, the elliptic L4 point is replaced by a partially hyperbolic DE
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L4 π-periodic orbit, i.e., having stability type center × saddle × center. This means
there is a 1-parameter family of 2-dimensional invariant tori in the planar and vertical
directions, and by coupling oscillations, there is a 2-parameter family of 3-dimensional
tori. Conversely, the 2π-periodic orbit in the EM CR3BP is elliptic and continues into
an elliptic periodic orbit in the SEM HR4BP, though picks up a center mode because
the unity eigenvalues transition into an additional center mode due to the periodic
perturbation. This orbit–Branch C–is elliptic over the m considered. Branch B, stem-
ming from the same CR3BP periodic orbit, is partially hyperbolic throughout m for
which it persists. Branch B is killed in the bifurcation with Branch A, whence Branch
A changes stability from elliptic to partially hyperbolic, inheriting the stable/unstable
manifold structure through the bifurcation. Figure 3 shows the π-stroboscopic map of
the stable/unstable manifolds of Branches A and B for several values of m, namely
before and after the bifurcation. In this figure, we see the structure of the stable/un-
stable manifolds persists from Branch B to Branch A through the bifurcation. Note
that these are not homoclinic points of the flow map, i.e., the stable/unstable mani-
folds do not intersect in phase space. In the SEM HR4BP, Scheeres showed that the
stable manifold of DE L4 is confined to the interior of the structure, and the unstable
manifold remains on the exterior.
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Fig. 1: Continuation of 2:1 resonant periodic orbit, bifurcation with DE L4 [26].
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Fig. 2: DE L4 and 2:1 resonant periodic orbit in Sun-Earth-Moon HR4BP.

Fig. 3: Stable and unstable manifolds of Branches B and A (DE L4) under the π-
stroboscopic map for several values of m. Note that the map shows τ = 0 mod π.
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Table 1: Stability of low-dimensional solutions in CR3BP and HR4BP

Solution λ1,2 λ3,4 λ5,6

EM CR3BP L4 EP 0 ±i0.9545 0 ±i0.2982 0 ±i1
EM CR3BP 2π PO 0.6465± i0.7629 1± i0 0.9990± i0.0455
SEM HR4BP DE L4 0.5129± i0.8530 −1.0547,−0.9482 −0.9644± i0.2643
SEM HR4BP L4 2:1 −0.6043± i0.7968 0.9885± i0.1513 0.8534± i0.5212

3 Methods

In this section, we review the myriad of methods employed to study the dynamics near
the Earth-Moon triangular points in the HR4BP. Firstly, we would like to characterize
the bounded motions around DE L4. Since DE L4 is partially hyperbolic, a common
strategy is to apply center manifold reduction wherein the bounded and hyperbolic
motions are systematically decoupled up to some order of a series expansion around
DE L4. The primary limitation of the center manifold reduction is the radius of conver-
gence which relates to the distance the expansion accurately represents the dynamics
around DE L4. Oftentimes center manifold reduction can be used in conjunction with
the computation of quasi-periodic invariant tori to provide a more complete picture
of the dynamics in a particular region; however, if the center manifold reduction tech-
nique is severely limited, this can give some insight into the dynamics qualitatively
because there is a plausible explanation for this. Hence, we also apply the flow map
method [5, 27] to compute invariant 2-tori around DE L4 and the 2:1 resonant orbit.
We are also interested in the unbounded motions around DE L4, so we compute the
normal bundles of invariant tori. Using the stable and unstable bundles, we compute
the global stable and unstable manifolds of particular 2-tori.

3.1 Center Manifold Reduction

The normal form computational techniques used here are based on [28, 29] and modi-
fied to the HR4BP, as in [18]. We will give an overview of the fundamental aspects of
the techniques; see the referenced texts for details on implementation. In this respect,
the primary objective of this normal form technique is to re-center the Hamiltonian
function about the dynamical equivalents of L1,2, expand as an infinite series, and,
through successive time-dependent canonical transformations, change coordinates such
that the system is autonomous and the local hyperbolic and elliptic modes of motion
are decoupled. See the appendices of [18] for the derivations used for re-centering and
expanding the Hamiltonian around EM L1,2–the procedure for EM L4 is identical.

We re-center and expand the Hamiltonian in Equation 1 about Earth-Moon L4,
denoted by HEM. See [18] for details. This cancels terms of degree one in the Hamil-
tonian. In addition to re-centering, it is useful to autonomize the Hamiltonian by
introducing a variable that is a symplectic conjugate to the periodic variable τ , called
IS . Then, we define the autonomized Hamiltonian as:

H(q, p, τ, IS) = ωSIS +HEM. (9)
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Note that the autonomization procedure above does not remove the dependence on τ .
We would like to remove the τ -dependence up to a certain order, and this is reserved
for a later step.

Once the Hamiltonian function has been autonomized by introducing IS conjugate
to τ and re-centered about the dynamical equivalent of interest to cancel terms of
degree one, we utilize the Symplectic Floquet Theorem [30] to put the quadratic
terms into diagonal normal form with constant coefficients. Note that for degrees one
and two, we need not expand the Hamiltonian as an infinite series of homogeneous
polynomials [31]. Applying the Floquet transformation to the Hamiltonian in Equation
9, as well as the complexification given by

qj =
q̃j + ip̃j√

2
, pj =

iq̃j + p̃j√
2

(10)

for j = 2, 3, we obtain the desired form:

H(q, p, τ, IS) = ωSIS + ω1q1p1 + iω2q̃2p̃2 + iω3q̃3p̃3 +
∑
n≥3

Hn(q, p, τ, IS). (11)

We now follow a similar discussion as [28] to put the third-order terms into the
desired form. The procedure is then applied similarly for subsequent orders. As men-
tioned above, we start with the Hamiltonian in Equation 11, which is of the form:
H = ωSIS + H2 + H3 + · · · + Hn + · · · , where H2 is in complex normal form and
Hn = Hn(q, p, τ), n ≥ 3, is a homogeneous polynomial of degree n whose coefficients
are complex-valued periodic functions of τ .

The normalization process begins at degree 3, using a generating function G3 which
is also a homogeneous polynomial of degree 3 in (q, p) with coefficients depending
periodically on τ . Then, we continue at degree 4 with G4, and so on. By choosing
a generating function that defines a non-autonomous Hamiltonian vector field, and
flowing along for unit time, we can define a time-dependent canonical transformation
that removes the time dependence of the Hamiltonian in the new coordinates.

Starting with the following Hamiltonian:

H = ωSIS +H2(q, p) +H3(q, p, τ) + · · ·+Hn(q, p, τ) + · · · , (12)

where Hn(q, p, τ) =
∑

|k|=n a
k
n(τ)q

k1

pk
2

, akn(τ) =
∑

j a
k
n,je

jiτ , and k ∈ Z3 × Z3,

denoted k = (k1, k2), is a multi-index. Note that we use Fourier series to approximate
the time-periodic coefficients akn(τ). To remove certain terms fromH3(q, p, τ) (similarly
for Hn(q, p, τ) for each n), we will make a change of variables generated by G3:

G3 = G3(q, p, τ) =
∑
|k|=3

gk3 (τ)q
k1

pk
2

, gk3 (τ) =
∑
j

gk3,je
jiτ . (13)

As G3 generates a Hamiltonian vector field, the canonical transformation generated
by G3 is the time one flow along this vector field. We write explicitly the terms of
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degree 3 of the transformed Hamiltonian H̄3:

H̄3 = H3 − ωS
∂G3

∂τ
+
∑
|k|=3

⟨ω̄, k2 − k1⟩gk3 (τ)qk
1

pk
2

, (14)

where we define the vector of coefficients of H2 as ω̄ = (ω1, iω2, iω3). Note that we
consider here the stability case of saddle × center × center, but this procedure is easily
generalized to other stability cases. Continuing, note that H̄3 and G3 are unknowns in
Equation 14, and we solve for G3 presupposing H̄3 to have a desired form. Imposing
the condition that the form of H̄3 =

∑
|k|=3 h

k
3(τ)q

k1

pk
2

, and grouping all terms with

the same k, we obtain the following set of linear differential equations with gk3 as
unknowns to be selected later:

ωS
dgk3
dτ

− ⟨ω̄, k2 − k1⟩gk3 = ak3 − hk3 . (15)

We can solve the above differential equations explicitly as:

gk3 (τ) =
∑
j /∈Jk

ak3,j − hk3,j
jiωS − ⟨ω̄, k2 − k1⟩

ejiτ , j ≥ 0, (16)

where Jk = {j ∈ Z | jiωS−⟨ω̄, k2−k1⟩ = 0} is the “resonance module,” i.e., the set of
indices of resonant terms. In the Sun-Earth-Moon HR4BP, Jk contains only the zero
vector for each k. Note that if j ∈ Jk, we have to impose ak3,j = hk3,j and are unable to

remove the time dependence. But, for j /∈ Jk, we can choose hk3,j and hence choose G3.

In Equation 16, the hk3,j are determined for the application. We seek to study the
center manifold by reducing to an autonomous system and constructing an integral
for the saddle such that, if set to zero, we obtain the center manifold. This means that
we should choose hkn,j as follows.

First, to eliminate time dependence, we choose the values hkn,j = 0 for j > 0

(j /∈ Jk). Notice that by additionally setting hkn,0 = 0, we remove also the monomial

associated with akn,j . To construct the saddle integral, we remove all monomials with

k11 ̸= k21. This means that the transformed Hamiltonian (up to some order N) will
have the form:

H̄(q, p, τ) = HN (q1p1, q2, q3, p2, p3) +R(q, p, τ), (17)

where R is the remainder containing homogeneous polynomials of degree greater than
N . Note that H̄ depends on the product q1p1, rather than q1 and p1 separately. By
defining the action variable I1 and a symplectic conjugate hyperbolic angle θ1–see the
Appendix in [32] for investigation of θ1–we obtain a canonical change of variables:

H̄(q, p) = HN (I1, q2, q3, p2, p3) +R(I1, θ1, q2, q3, p2, p3, τ). (18)
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If we neglect the remainder, the truncated Hamiltonian HN does not depend on θ1.
Hence, I1 is a first integral of the system, called the “saddle integral” [32]. If we set
I1 = 0 (in particular, q1 = p1 = 0), then HN provides an N th-order approximation of
the center manifold. We will exploit the saddle integral further in the next section to
study the normal hyperbolic behavior of the center manifold.

Note that we could additionally remove monomials to construct two integrals for
the center manifold–this is the Birkhoff normal form. The benefit of the Birkhoff
normal form is that it is integrable; however, the downside is the decreased radius of
convergence. We note the construction of the center manifold is not unique. Depending
on which monomials survive and which monomials are removed, one can obtain a
different representation, e.g., the center manifold of L2 in the QBCP is computed
differently in [31] and [29].

Following this procedure, the variables of HN (0, q, p) will be complex variables in
general. Hence, a canonical realification transformation is performed using the inverse
of the complexification transformation given by Equation 10. Further, the nonlinear
change of variables is obtained by the sequence of canonical transformations generated
by G3, G4, . . .. We perform this order-by-order and can transform each coordinate qj
or pj via the transformation defined by

q̃j = qj + {qj , Gk}+
1

2!
{{qj , Gk}, Gk}+ · · ·+ 1

n!
Ln
Gk

(qj) + · · · (19)

p̃j = pj + {pj , Gk}+
1

2!
{{pj , Gk}, Gk}+ · · ·+ 1

n!
Ln
Gk

(pj) + · · · , (20)

where Ln
Gk

is the n-th order Lie derivative. See [33] for details.
Finally, we investigate the dynamics in the local center manifold around DE L4

by studying the vector field induced by HN (0, q, p) : R4 7→ R which is independent of
time. In these dynamics, the energy integral is recovered. This reduces the problem of
studying dynamics around DE L4 to the study of area-preserving maps parameterized
by the energy [18]. Once the energy is fixed, we can take a particular Poincaré section
to obtain a 2-dimensional picture of the local center manifold. In this work, we use
the vertical section Σv = {q2 = 0}, which corresponds to fixing z = 0 in synodical
coordinates to first order [28].

3.2 Computation of Invariant Tori

In this work, we compute families of 2-dimensional quasi-periodic invariant tori by
computing a parameterization v : T2 → T ⊂ R6 that maps angles θ = (θ0, θ1) to a
state on the quasi-periodic orbit, T , that is invariant under the flow induced by the
Hamiltonian function H. The dynamics on the standard 2-torus, T2, are linear and
the constant frequencies of oscillation, ω = (ω0, ω1), are non-resonant. In particular,
the frequency ω0 is the frequency of the perturbation, i.e., ω0 = ωS = 2.

Since the parameterization v is invariant under the flow, the invariant curve defined
by the map u(θ1) = v(0, θ1) : T1 7→ T ⊂ R6, satisfies

φT (u(θ1)) = u(θ1 + ρ) (21)
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where φt is the flow induced by H for time t ∈ R, T = 2π/ω0 = π is the period of the
perturbation, and ρ = 2πω1/ω0 is the rotation number of the torus.

To compute u explicitly, we discretize the invariant curve u(θ1) over 2N +1 angles
whence the computation of invariant curves becomes a boundary value problem in
which the 2N +1 states must meet the boundary condition described by Equation 21.
We solve the boundary value problem by defining the grid of angles, the grid of points
along the invariant curve, and the free variable vector as

θ1,k =
2πk

2N + 1
, k = 0, . . . , 2N, (22)

U =
[
u(θ1,0)

⊺ · · · u(θ1,2N )⊺
]⊺
, (23)

z =
[
U⊺ ρ

]⊺
, (24)

respectively. Defining the constraint vector as

g(z) := R−ρφT (U)− U = 0, (25)

where we apply the rotation operator R−ρ, sending arguments of functions depending
on θ1 to θ1−ρ, and the flow φT is applied to each block element, as in [21], solutions to
g(z) = 0 implicitly define a smooth manifold that is the 2-dimensional quasi-periodic
invariant torus. It is important to note that the rotation operator can be constructed
by composing discrete Fourier transform operations [21, 27]. Note that we solve this
boundary value problem using a multiple shooting scheme with a Newton update step.

As any phase shift also satisfies the boundary value problem, we also add a phase
constraint that minimizes the phase difference between the initial curve and the pre-
viously computed invariant curve, following [21, 27]. To compute families of invariant
2-tori, which lie in Cantorian one-parameter families in the HR4BP [34], we also
employ a pseudo-arclength continuation scheme [23]. Hence, we add the continuation
constraint

c(z) :=
1

2N + 1
(U − Ũ)⊺nu + (ρ− ρ̃)nρ −∆s = 0, (26)

where Ũ and ρ̃ denote the previously computed grid points along the invariant and
rotation number, repsectively, nu and nρ are approximations of the null space direction
of the constraint Jacobian matrix corresponding to the invariant curve and rotation
number, and ∆s is the step size.

3.3 Normal Behavior of Invariant Curves

We are interested in studying the stability of 2-dimensional quasi-periodic orbits in the
HR4BP. By using the flow map method, we reduce the problem to that of computing
the linearized normal behavior of an invariant curve of a diffeomorphism (the flow
map φT ) [35]. Given an invariant curve u(θ1) such that φT (u(θ1)) = u(θ1 + ρ) for all
θ1 ∈ T1. A small displacement h ∈ R6 with respect to a point u(θ1) on the curve is:

φT (u(θ1) + h) = φT (u(θ1)) +DuφT (u(θ1))h+O(∥h∥2). (27)
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The linear normal behavior is described by the system

ū = A(θ1)u, θ̄1 = θ1 + ρ, (28)

where A(θ1) = DuφT (u(θ1)). The rotation operator defined in the previous section is
applied to the generalized eigenvalue problem as Rρ : ψ(θ) 7→ ψ(θ+ρ). We consider the
generalized eigenvalue problem in which we look for pairs (λ, ψ) ∈ C×(C(T1,Cn)\{0})
such that

A(θ1)ψ(θ1) = λRρψ(θ1). (29)

To compute the stability of invariant tori, we discretize the operator R−ρ ◦ A(θ1),
which is represented by a matrix. We then compute the eigenvalues and eigenvectors
of this matrix by a standard numerical procedure. The resulting eigenvalues will form
circles in the complex plane, covered by the same number of points as in the discretized
invariant curve. If the invariant curve u(θ1) is reducible, then its normal behavior will
depend on six independent eigenvalues and eigenfunctions from this discretized set [35].
As the map φT is symplectic, the corresponding 6 eigenvalues will come in reciprocal
and conjugate pairs, and there will be one pair of unity eigenvalues. The eigenfunctions
corresponding to the unity pair are the tangent vector of the invariant curve along the
flow and the tangent vector pointing in the direction of the one-parameter family of
invariant 2-tori.

While the eigenvalues computed in this discretization will have different accu-
racy, due to the discretization, we implement a sorting method described in Jorba
[35] and summarize the technique here. Representing each eigenfunction as a Fourier
series

∑
j ψjexp(ijθ1), we want to determine which eigenfunctions have the least

discretization error. Hence, we consider the truncated Fourier series

ψN
j (θ1) =

N∑
j=−N

ψjexp(ijθ1). (30)

The discretization error of the eigenfunctions is given by the magnitude of Fourier
coefficients for j > N [21]. As the eigenfunctions are analytic, their Fourier coefficients
should decay exponentially from where the spectrum is centered [21]. So, by checking
the truncation error defined by

TE(ψ,N) =
∑

|j|>N

|ψj ||j|, (31)

we find the most “centered” eigenfunctions, and we choose these as our representative
eigenfunctions and corresponding eigenvalues as the six representatives of the equiva-
lence classes, provided the tails are sufficiently small. These representative eigenvalues
and eigenfunctions then provide an accurate description of the normal dynamics. In
particular, an eigenvalue pair on the unit circle in the complex plane describes a nor-
mally elliptic direction, and an eigenvalue pair on the real line away from ±1 describes
a normally hyperbolic direction. Changes in stability type indicate a bifurcation in the
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family of quasi-periodic invariant tori, similar to Krein collisions of periodic orbits in
Hamiltonian systems [36].

3.4 Hyperbolic Invariant Manifolds of Invariant Tori

The stable manifold theorem gives the existence of stable and unstable invariant man-
ifolds emanating from quasi-periodic invariant 2-tori having a pair of real eigenvalues
with modulus different from 1. The (global) stable and unstable manifolds are defined
as the collections of points that asymptotically approach the invariant 2-torus as
t → +∞ and t → −∞, respectively. In the section above, we described a process for
computing eigenvalues and eigenfunctions of invariant curves. We follow [37, 38] to
compute the hyperbolic invariant manifolds of a normally hyperbolic invariant 2-torus.
Suppose we have computed some invariant curve u(θ1) which has a pair of hyperbolic
eigenvalues λs,u ∈ R with corresponding eigenfunctions ψs,u(θ1). For h ∈ R small and
any θ ∈ [0, 2π], these hyperbolic eigenvalues and eigenfunctions satisfy:

φT (u(θ1) + hψs,u) = φT (u(θ1)) + hA(θ1)ψs,u(θ1) +O(∥h∥2) (32)

= u(θ1 + ρ) + hλs,uψs,u(θ1 + ρ) +O(∥h∥2), (33)

where A(θ1) is defined in the previous section. Hence, the map

(θ1, h) 7→ u(θ1) + hψs,u(θ1) (34)

is a parameterization of the linearization of the stable and unstable manifolds along
the invariant curve u(θ1). To compute the global stable and unstable manifolds of the
invariant curve, one can fix a value of h = h0 so that the error of the linearization is
sufficiently small–we have used h0 = 10−5 so that the error is O(10−10). However, as
the HR4BP is π-periodic, under the π-periodic flow map a point of the invariant curve
perturbed by h0 onto the stable (unstable, respectively) manifold will be perturbed
by h0/λs (λuh0, respectively). By choosing h ∈ [h0, h0/λs] ([h0, λuh0], respectively),
we can effectively parameterize (in a linear sense) the stable and unstable manifolds
of not only the invariant curve u(θ1), but of the entire 2-torus v(θ0, θ1) under the π-
stroboscopic map. In other words, we have parameterized the fundamental cylinder
of the hyperbolic invariant manifold. To globalize the manifold, we define a mesh of
points along the cylinder (θ1, h) ∈ [0, 2π] × [h0, h0/λs] ([h0, λuh0], respectively) and
propagate the points on the cylinder backward (forward, respectively) to compute
the stable (unstable, respectively) manifold. Note that we perturb in ±h to obtain
both sides of the invariant manifold. In this work, we choose a 251 × 251 grid for
computations.

4 Results

In this section, we display and analyze the results from the methods described in the
previous section applied to the Sun-Earth-Moon HR4BP. Firstly, we include a Poincaré
map generated via center manifold reduction. Limitations of this method applied to
L4 are discussed. Then, five families of Lyapunov invariant 2-tori are presented along
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Fig. 4: Radius of validity for center manifold reduction around DE L4.

with their normal behavior. Finally, we show the existence of natural trajectories that
escape the region around the triangular points, escaping the system or encountering
regions near the primaries.

4.1 Poincaré Map

The center manifold reduction was computed about DE L4 up to degree 12. Figure
4 shows the radius of validity for the center manifold reduction around DE L4 up to
degree 12. Observe that this radius decreases suddenly and asymptotically approaches
zero. The small radius of convergence indicates that the Poincaré map will be severely
limited in its utility to accurately describe dynamics near DE L4. Namely, Figure 5
shows a Poincaré map of the center manifold reduction of degree 4 at a fixed energy
value h = 0.01. Note that the order and recovered energy integral are both small due
to the divergence properties of the series expansion. Figure 5 shows the existence of 2-
and 3-dimensional planar Lyapunov invariant tori around DE L4. Yet, the divergence
properties of the series expansion limit the computation and numerical precision of
the invariant tori. Hence, we utilize the flow map method to parameterize individual
invariant 2-tori to study the invariant manifold structures around DE L4 and L4 2:1
resonant periodic orbit.
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Fig. 5: Poincaré section Σv of degree 4 at fixed energy value h = 0.01.

4.2 Families of Invariant 2-tori

In this section, we present the results of computing the five families of Lyapunov
invariant 2-tori around DE L4 and the L4 2:1 resonant periodic orbit and their normal
behavior. We will identify bifurcations and compute bifurcations in the cases which
are created by the perturbation. In other words, if the bifurcation exists between
periodic orbits in the Earth-Moon CR3BP, then the bifurcation will be identified but
not computed or continued.

4.2.1 DE L4 H

The first family of Lyapunov invariant 2-tori around DE L4 is the planar family, which
we denote as “DE L4 H.” The “H” stands for horizontal, as opposed to “V” for vertical.
By taking as an initial guess the excited planar center mode of DE L4 periodic orbit,
we compute this family of invariant 2-tori using pseudo-arclength continuation and
the algorithm described in Section 3. This family is qualitatively similar to (and a
generalization of) the long-period family of periodic orbits around L4 in the Earth-
Moon CR3BP.

Figure 6 shows a hodograph of the family computation, along with sample torus
representations. The family grows as x0 increases. We follow the convention to repre-
sent families of invariant tori as with periodic orbits, i.e., to choose a particular state
variable–x(τ) at τ = 0 mod π–as a variable plotted against the frequency associated
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to the center mode. However, unlike in the case of periodic orbits, the choice of this
variable is not unique–any point along the τ = 0 mod π invariant curve is equivalent.
We choose the first x-coordinate along this invariant curve given by the numerical
output of the differential correction. This results in a smooth curve for the family’s
hodograph. The family computation ends when the algorithm fails to converge. In
this instance, the τ = 0 mod π invariant curve became less analytic, resulting in
an increased number of Fourier modes used to describe the curve. While the family
could be continued farther, we stopped the computation when the maximum number
of Fourier modes was reached. Alternatively, one could use the invariant curve along
the other angular variable.

Figure 7 shows the computed normal behavior of the family of tori. As in the
previous figure, the family grows in increasing x0 = x(0 mod π). To show the stability,
we describe two eigenvalues representing each normal mode. Due to the symplectic
nature of the system, these eigenvalues come in reciprocal pairs (Krein quartets, in
fact), so we pick one from each pair. The normal behavior for the DE L4 H family
remains of type center × saddle, as seen most clearly by the magnitude of eigenvalues
λ1 and λ2, the center and unstable eigenvalues, respectively. The behavior of this
family is the most straightforward of the five presented, and we will return to DE L4

H when considering transport near L4 in the HR4BP in a later section.

4.2.2 DE L4 V

The DE L4 V family is a collection of invariant 2-tori emanating from the center mode
of DE L4 in the vertical (z) direction. This family is qualitatively similar to (and a
generalization of) the vertical Lyapunov family of periodic orbits around L4 in the
Earth-Moon CR3BP. Using the same computational methods as above, we computed
invariant 2-tori until a maximum z-value was reached because we are interested in the
dynamics within this bound.

Figure 8 shows a hodograph of the family computation, along with sample torus
representations. Note that the family grows as ω2 increases. The invariant tori of this
family retain a figure-8 shape as in the periodic vertical Lyapunov orbits about L4 in
the CR3BP; however, due to the periodic forcing of the Sun, an additional frequency
is added.

Figure 9 shows the computed normal behavior of the family of tori. Unlike the DE
L4 H family, we show the normal behavior of DE L4 V as a function of ω2 because
the family is one-to-one in this variable. Once again, note that the family grows as ω2

grows. This figure shows that there are two bifurcations detected along the orbit family:
a frequency-halving bifurcation, and a tangent bifurcation. The tangent bifurcation
is seen in the CR3BP within the vertical Lyapunov family of periodic orbits around
L4, and so we say that it is an artifact of the CR3BP and leave its computation for
future work, if desired. The frequency-halving bifurcation is not an artifact of the
CR3BP and is thus born from the periodic forcing of the Sun. The term “frequency-
halving” is a generalization of “period-doubling” from periodic orbits to quasi-periodic
orbits (which have no period but instead have multiple frequencies). We note that
the frequency-halving bifurcation is detected because a Krein collision of eigenvalues
occurs along the negative real axis.
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Fig. 6: Hodograph and sample invariant tori of DE L4 H family. See text for details.
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Fig. 7: Normal behavior of DE L4 H family of invariant tori.

We can summarize the normal behavior as follows. The family begins with the
stability type of DE L4: saddle × center. There is a frequency-halving bifurcation that
changes the stability of DE L4 V to type center × center. Then, there is a tangent
bifurcation which changes the stability to center × saddle.

4.2.3 L4 2:1 H1

As the 2:1 resonant periodic orbit around L4 is elliptic, there are two planar oscillatory
modes. We adopt the naming convention of H1 and H2 for these horizontal families of
invariant 2-tori. The L4 2:1 H1 family is born from the planar oscillation corresponding
to the “long-period” (i.e., smaller frequency) central mode. Thus, the H2 family is
born similarly but from the “short-period” (i.e., larger frequency) central mode.

Figure 10 shows a hodograph of the family computation, along with sample torus
representations. Note that the family grows as ω2 decreases. Notice that the orbit
appears to be getting pulled into DE L4. While it has been shown that the stable
and unstable manifolds of DE L4 do not intersect [10], i.e., DE L4 is not a homoclinic
point, one can apply the following codimension argument to see that we expect there
to be homoclinic and heteroclinic 2-tori near DE L4. Consider an arbitrarily small
planar 2-torus in the DE L4 H family. Then the stable and unstable manifolds of
this 2-torus intersect at a surface of dimension equal to the sum of the dimensions
of the center-stable and center-unstable manifolds minus the dimension of the phase
space. The center-stable and center-unstable manifolds each have dimension 3. Since
we are considering the planar problem, the phase space is 5-dimensional (4 spatial,
1 temporal). Thus, 3 + 3 − 5 = 1, so we expect there to be a 1-parameter family of
homoclinic connections in the planar problem. These homoclinic connections between

21



Fig. 8: Hodograph and sample invariant tori of DE L4 V family. See text for details.
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Fig. 9: Normal behavior of DE L4 V family of invariant tori.

invariant 2-tori in the plane act as partial barriers to transport. It is clear from the
stroboscopic map in Figure 11 that the invariant curves are approaching a boundary
close to the stable and unstable manifolds of DE L4. The authors speculate that the
2:1 H1 family ends in a homoclinic bifurcation with a homoclinic connection of an
arbitrarily small member of the DE L4 H family. The explicit computation of the
connection is left for future work, as an identical argument shows 1-parameter families
of heteroclinic connections exist, which may enable Arnold diffusion around DE L4 in
the Sun-Earth-Moon HR4BP.

Figure 12 shows the computed normal behavior of the family of tori. As in the
previous figure, the family grows in decreasing ω2. Observe that this family is elliptic,
i.e., has normal stability type center × center. Yet, as we continue along this family
of elliptic tori, by analyzing the bottom-right plot showing arg(λ2), we see that one
pair of eigenvalues is approaching a Krein collision on the positive real axis, signaling
an upcoming bifurcation. While we were unable to continue the family any further to
exactly detect the bifurcation, this observation is consistent with the arguments made
in the previous paragraph.

4.2.4 L4 2:1 H2

As stated in the previous section, the L4 2:1 H2 family of Lyapunov invariant 2-tori
corresponds to the “short-period” (i.e., larger frequency) central mode of the elliptic
2:1 resonant periodic orbit. Figure 13 shows a hodograph of the family computation,
along with sample torus representations. Note that the family grows as ω2 decreases
(or as x0 increases). Unlike the 2:1 H1 family, the 2:1 H2 family is not pulled in by DE
L4. Instead, the tori in this family appear to similarly wind around the 2:1 periodic
orbit. We can see that the homoclinic and heteroclinic connections of the DE L4 H
family do not impose such transport restrictions on the H2 family as in the previous
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Fig. 10: Hodograph and sample invariant tori of L4 2:1 H1 family. See text for details.
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Fig. 11: Invariant curves of the π-stroboscopic map with W s,u of DE L4.

Fig. 12: Normal behavior of L4 2:1 H1 family of invariant tori.
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section with the H1 family. Figure 14 shows the invariant curves of H2 under the
stroboscopic map. Note that as the colors move from blue to green to red, the family
is increasing. Ultimately the computation of tori is stopped by the need to increase
the number of Fourier modes above the maximum allowed in our computations–this
threshold is reached due to the twisting of the invariant curves observed.

Figure 15 shows the computed normal behavior of the family of tori. As in the pre-
vious figure, the family grows in decreasing ω2. The family of invariant 2-tori inherits
the normal behavior of the elliptic 2:1 resonant periodic orbit, i.e., the family begins
with stability type center × center. There is one bifurcation identified in the family:
a tangent bifurcation. This bifurcation connects the 2:1 H2 and V families, as can be
seen in Figure 16 wherein one of the two broken branches bifurcates into the plane.

4.2.5 L4 2:1 V

The final of the five families of the Lyapunov 2-tori computed near L4 is the 2:1 V
family. Figure 16 shows a hodograph of this family with sample torus representations.
First, observe that there is a symmetry from the left and right sides of the hodograph;
because these tori emanate from a 2:1 periodic orbit, showing the τ = 0 mod π
stroboscopic map yields two points representing the same torus on the hodograph.
Moreover, the same principle applies to the previous two families, we simply omit one
side because the two sides never meet, as in the 2:1 V family shown here. The family
is computed from light to dark red. Due to the symmetry, light blue and light green
are equivalent representations of the same invariant torus (similar to dark blue and
dark green). The computation is stopped once the 2:1 periodic orbit is reached again.

Figure 16 shows a bifurcation in the 2:1 V family, and the blue and green torus
representations indicate that these bifurcations connect the planar 2:1 H2 family, as
seen in the previous section. It is important to note that this bifurcation is broken
and that the light and dark blues thus represent different invariant tori (similarly
with the light and dark greens, by symmetry). The precise cause of this bifurcation is
unknown to the authors. The normal behavior was computed to be elliptic for all 2-tori
computed, including the tori born from the bifurcation. The stability is not presented
because, as the tori were all found to be elliptic, the equivalence class representatives
were not chosen–no clear additional insight would be gained by their inclusion.

The orbit in the 2:1 V family which minimizes ω2 (the torus represented in the
middle subplot of Figure 16) is qualitatively similar to the DE L4 V tori nearby–they
are both in the shape of a figure 8. The frequency-halving bifurcation that occurs in
the DE L4 V family potentially relates the DE L4 V and 2:1 V families of invariant
tori.

4.3 Transport near L4 in the HR4BP

4.3.1 System-wide Transport near DE L4

Two of the central questions about the dynamics around EM L4 in the Sun-Earth-
Moon system are: can a point start close to DE L4 and escape the system? How
are trajectory fates dispersed? In this section, we show that the hyperbolic invariant
manifolds of an invariant torus near EM L4 can flow close to Earth and Moon, as
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Fig. 13: Hodograph and sample invariant tori of L4 2:1 H2 family. See text for details.
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Fig. 14: Invariant curves of the π-stroboscopic map. Note that W s,u of DE L4 are
not absolute barriers of transport.

Fig. 15: Normal behavior of L4 2:1 H2 family of invariant tori.
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Fig. 16: L4 2:1 V family with broken bifurcations. Note that there is a symmetry due
to the 2:1 underlying period.
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well as escape the system. As this is qualitatively different behavior from the Earth-
Moon CR3BP, we choose an quasi-periodic orbit near DE L4. In particular, we select
a member of DE L4 H, as shown in Figure 17. We take as the initial invariant curve to
be at τ = 0 mod π, and we use h0 = 10−5 for the initial perturbation onto the stable
or unstable manifolds. Figure 18 shows the results of cylinder set computations around
an invariant torus of DE L4 H close to DE L4. Blue points correspond to trajectories
that escape the system; red points intersect the radius of GEO in the configuration
space; yellow points impact the lunar surface; black points do not satisfy any of the
above criteria. The statistics for the cylinder sets are given in the table below:

Manifold Lunar Impact (%) GEO Radius (%) Escapes (%) None (%)
W s

+ 17.33 13.24 60.75 8.69
W s

− 16.89 13.69 61.42 8.00
Wu

+ 27.78 16.52 48.25 7.45
Wu

− 27.29 17.23 48.64 6.85

The chaotic distribution of fates on each cylinder set can be described via closest
approach to the Moon. We take as an illustrative example in the Wu

− map, choosing
three points within a small neighborhood with each a distinct fate. Figure 19 shows the
resulting trajectories (top) with the corresponding points on the cylinder (bottom).
Note that the trajectories remain close together until the first lunar perilune, whence
the trajectories enter the interior region near the Earth. Now, the yellow trajectory
intersects the lunar surface. The red trajectory spends more time in the interior region
then has a second close approach to the Moon and temporarily orbits the system
before intersecting the GEO radius. Finally, the blue trajectory similarly winds around
Earth in the interior region before making a close approach with the Moon–notably
closer than the red trajectory–and picks up significant energy from the flyby causing
it to escape the system.
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Fig. 17: Selected invariant curve from DE L4 H member.
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Fig. 18: Transport maps describing fates of trajectories along stable and unstable
manifolds of selected DE L4 H torus.

The change in energy from each lunar flyby can be seen by computing the Hamil-
tonian along each trajectory, as shown in Figures 20 and 21. The Hamiltonian is not
constant along the flow as the system is periodic. Figure 20 shows the difference in
energy change across each flyby, especially red and blue, i.e., GEO intersection and
escapes the system. In the zoomed plot in Figure 21, we can more clearly see the
effect of the first lunar perilune on the energy of each trajectory. Namely, the differ-
ence in energy along each trajectory is matched until the first lunar perilune, whence
the energies are dephased and diverge from each other. Clearly, the yellow trajectory
diverges least, as it intersects the lunar surface and hence has no lunar flyby.

Finally, as it is possible to move around the Earth-Moon system via stable and
unstable manifolds of a quasi-periodic orbit close to EM L4, we can consider L4 as
a region of interest for the disposal of objects near the Moon. As we have seen, the
stable manifold of the selected quasi-periodic orbit intersects the lunar surface at
many points. We can compute the necessary ∆V for a single-impulsive maneuver
sending a particle from the lunar surface directly onto the stable manifold of the
chosen orbit, accounting for the velocity gained from the rotation of the Moon. This
gives a conservative estimate on disposal maneuver cost for spacecraft along periodic
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and quasi-periodic orbits near L1 and L2, as there is less energy difference between
these orbits to apply a maneuver compared with the lunar surface. Figure 22 shows
the comparison of all points along the stable manifold, W s

±, in time of flight (in years)
and ∆V (in km/s), as well as the trajectory corresponding to the minimum time
of flight. In the top plot, the red star is the minimum time of flight, and the blue
star is the minimum ∆V . In the bottom plot, the first segment, shown in black, is
the portion of the trajectory transiting into the greater L4 region, while the second
segment, shown in red, remains in the greater L4 region. While the time of flight to
the specific quasi-periodic orbit is nearly 10 years, the transit time to the greater L4

region is approximately 78 days.

33



Fig. 19: Trajectory comparison between adjacent points of Wu
− map with different

fates.
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Fig. 20: Energy comparison between adjacent map points with different fates.

Fig. 21: Zoom of energy comparison between adjacent map points with different fates.
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Fig. 22: ∆V [km/s] and time of flight [yrs] for direct transfers from the lunar surface
onto the stable manifold of the selected small-amplitude quasi-periodic orbit near L4,
including minimum time of flight trajectory.
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4.3.2 Powered Transport from Earth Orbit to L4

We modify the previous analysis considering the problem of sending a satellite from
Earth orbit to a quasi-periodic orbit around L4 of larger amplitude–and greater
hyperbolicity–than the orbit considered in the previous section. In this section, we
analyze transfers depending on the point of departure of the satellite around Earth. In
particular, we consider single impulsive maneuver transfers for circular orbits around
Earth–ranging from low Earth orbit (LEO) to Geosynchronous Earth Orbit (GEO)–
directly into the stable manifold of the selected L4 quasi-periodic orbit. For this work,
we consider low Earth orbit to be 1,000 km in altitude, whereas GEO is 35,786 km in
altitude.

Figure 23 shows the invariant curve chosen for transport analysis. Note that we
chose a quasi-periodic orbit with a greater amplitude than the previous case because
the instability is slightly increased, and this may lead to decreased ∆V costs for direct
transfers: |λu| = 1.0321. Integrating for a maximum of 50 years and using the same
fate conditions as in the previous section, we present the resulting transport maps
in Figure 24. Note that the maximum integration time is fixed at 50 years to show
a direct comparison between Figures 24 and 18. As the instability is larger for the
present example, we expect more points reaching a given fate, i.e., fewer black dots
for “none.” The statistics for the cylinder sets are given in the table below:

Manifold Lunar Impact (%) GEO Radius (%) Escapes (%) None (%)
W s

+ 19.49 17.35 63.16 < 0.01
W s

− 19.21 17.19 63.59 < 0.01
Wu

+ 29.59 19.65 50.76 < 0.01
Wu

− 29.65 18.27 52.08 < 0.01
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Fig. 23: Selected invariant curve from DE L4 H member.
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Fig. 24: Transport maps describing fates of trajectories along stable and unstable
manifolds of selected DE L4 H torus.

We would like to compute single impulsive maneuver transfers from orbits around
Earth to the selected L4 quasi-periodic orbit. The transport maps corresponding to
the stable manifold W s

± contain a set of trajectories that intersect the GEO radius
about Earth in position space. Allowing these trajectories to flow for an additional
3 months–stopping the integration if a trajectory crosses LEO–this set will be split
into subgroups: those trajectories with closest approach between LEO and GEO, and
those trajectories that cross LEO. In the latter case, we take closest approach as LEO.
At closest approach, we compute the necessary ∆V to transfer from a circular orbit
around Earth onto the stable manifold of the L4 orbit. On one hand, for trajectories
with closest approach between LEO and GEO, the angle between the circular velocity
vector and the stable manifold velocity vector–known as the flight path angle–will be
0◦ (parallel) or 180◦ (anti-parallel) at the point of closest approach, corresponding to
prograde and retrograde trajectories. Of course, the retrograde trajectories will require
a larger ∆V maneuver as the change of direction is significant. On the other hand, for
trajectories that cross the LEO threshold, the flight path angle can vary between 0◦

and 360◦.
Figure 25 shows the results of the transfer computations, plotting the triple

(t,∆V, ha), where t is the total time of flight from Earth orbit to the L4 orbit, ∆V is
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the maneuver magnitude, and ha is the altitude of initial circular orbit around Earth.
Note that ha ranges from 1000 km (LEO) to 35,786 km (GEO). Firstly, we find that the
trajectories with closest approach between LEO and GEO segregate into two groups
as predicted in the previous paragraph: prograde and retrograde. The prograde trajec-
tories have a ∆V between 1 and 3 km/s; by contrast, the retrograde trajectories have
a ∆V between 7 and 17 km/s. Additionally, the vast majority of computed transfers
have a total time of flight of less than 10 years. Finally, there is an even spread of
altitude to time of flight indicating a minimal relationship between the two.

Fig. 25: Powered transfers from LEO to GEO using a single impulsive maneuver to
inject onto the stable manifold of the selected quasi-periodic orbit organized by ∆V
[km/s], time of flight [yrs], and closest periapsis altitude [km]. See text for details.

5 Comparison with Existing Models

To gain a more complete picture of the dynamics near EM L4, we compare the findings
presented in this work with existing work in similar restricted 4-body problem models.
This is especially imperative to place our work in the context of the literature. In this
section, we compare the periodic orbits near EM L4 of the HR4BP with those of the
bicircular restricted 4-body problem (BCP) and the quasi-bicircular restricted 4-body
problem (QBCP). Most literature describing dynamics in the Sun-perturbed Earth-
Moon system takes the BCP as the dynamical model. In particular, dynamics near
EM L4 have been studied to varying extents by Jorba et al. in the BCP, QBCP, and
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a JPL model. Hence, we also make remarks about numerical simulations done in the
JPL ephemeris model based on L4 orbits in the BCP.

5.1 Bicircular Restricted 4-Body Problem

The bicircular restricted 4-body problem (BCP) is a dynamical system that can be
seen as a 2π-periodic perturbation of the circular restricted 3-body problem (CR3BP)
that accounts for the direct effect of the Sun. The BCP is a Hamiltonian system
described by Hamiltonian function, defining the corresponding momenta as px = ẋ−y,
py = ẏ + x, and pz = ż:

HBCP =
1

2

(
p2x + p2y + p2z

)
+ ypx − xpy −

1− µ

rPE
− µ

rPM
− mS

rPS
− mS

a2S
(y sin θ − x cos θ) ,

(35)
where r2PE = (x − µ)2 + y2 + z2, r2PM = (x + 1 − µ)2 + y2 + z2, r2PS = (x − xS)

2 +
(y − yS)

2 + z2, xS = aS cos θ, yS = −aS sin θ, and ωS = ωSt. The frequency of the
Sun, ωS = 0.925195985518290, plays an important role in the continuation of periodic
solutions from the CR3BP into the BCP (compared to the HR4BP). Figure 26 shows
a schematic of the BCP [13]. Note that in these two models, the positions of the Earth
and Moon are rotated 180◦ in the x− y plane.

Note that the indirect effect of the Sun, i.e., the effect of the Sun’s gravity on
the other two primary bodies, is not modeled in the BCP. By contrast, the HR4BP
accounts for both the direct and indirect effects of the Sun. The quasi-bicircular prob-
lem (QBCP) is a modification of the BCP which incorporates the indirect effect of the
Sun. Furthermore, a continuation parameter ε ∈ R is introduced to transition between
CR3BP and BCP models as follows:

Hε
BCP = HCR3BP + εĤBCP, ĤBCP = −mS

(
1

rPS
+
y sin θ − x cos θ

a2S

)
. (36)

From the above equation, one can see that Hε=0
BCP = HCR3BP and Hε=1

BCP = HBCP. A
similar process is applied in the QBCP.

5.1.1 Periodic Solutions

In the bicircular problem, as the linear frequencies around L4 are different from 2kπωS

∀k ∈ Z, the L4 periodic orbit can be continued to a 2π/ωS-periodic orbit for ε > 0
small. Figure 27 shows on the left plot the continuation diagram for L4 in the BCP [14].
Observe that there is a broken pitchfork bifurcation that causes a loss of uniqueness
for the dynamical substitute of L4 as ε → 1. In the right plot of 27, the projection
onto the configuration space is shown for the periodic orbits replacing L4. The normal
behavior for PO1 is center (horizontal) × saddle × center (vertical); both PO2 and
PO3 are elliptic periodic orbits. Note that PO1 of the BCP and DE L4 in the HR4BP
share stability characteristics which is responsible for the instability in the region
around L4 in the Earth-Moon system. Similarly, note that PO2 and PO3 of the BCP
share stability properties with the 2:1 resonant orbit of the HR4BP. Not only do they
share stability aspects, but the amplitudes of PO2 and PO3 are nearly identical to
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Fig. 26: Schematic of Sun-Earth-Moon-particle motion in the bicircular problem
(BCP) [13].

the L4 2:1 orbit in the HR4BP–compare Figures 27 and 2. In fact, the L4 2:1 orbit
in the HR4BP shares the phasing properties of PO2 and PO3, which have opposite
phasing; however, rather than two separate periodic orbits with opposite phasing, the
L4 2:1 orbit has a period double that of the system allowing for the opposite phasing
to occur on a single periodic orbit.

Figure 28 shows a comparison between the continuation of L4 in the BCP and in
the QBCP. Due to their similarity in bifurcations and normal behavior, the literature
considers the BCP as a sufficient approximation to model the dynamics around L4

using the BCP or QBCP.
One key difference between the HR4BP and QBCP is the period of the pertur-

bation. On one hand, the BCP and QBCP are periodic with period 2π/ωS , where
ωS ≈ 0.9252 is taken to be the frequency of the Sun. On the other hand, the HR4BP is
periodic with period π due to the symmetry provided by the Hill approximation of the
Sun’s gravitational effect. Consequently, the periodic orbit replacing L4 in the BCP
and QBCP will have period 2π/ωS , rather than period π as in the HR4BP. Similarly,
the 2:1 resonant periodic orbit in the CR3BP is a different orbit when considering the
periodic forcing of the QBCP or the HR4BP. In the HR4BP the 2:1 resonant orbit has
period 2π in the CR3BP; in the QBCP the qualitatively similar resonant orbit would
be 1:1 resonant orbit with period 2π/ωS . This CR3BP periodic orbit was not able to
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Fig. 27: Continuation of L4 in the bicircular problem (BCP) [14].

Fig. 28: Continuation of L4 in the quasi-bicircular problem (QBCP) compared to the
BCP [13].

be continued into the Sun-Earth-Moon BCP. Despite this, the behavior of periodic
solutions around L4 is qualitatively identical between the BCP and HR4BP.

5.1.2 Invariant Tori

In [14], the vertical families of invariant 2-tori around PO1, PO2, and PO3 are com-
puted in the Sun-Earth-Moon BCP. The planar families of invariant 2-tori around L4

in the BCP have not been presented in the literature, though [7] computes some pla-
nar families of Lyapunov 2-tori in the BCP with the perturbation of solar radiation
pressure.

Figure 29 shows the continuation of L4 vertical families of invariant 2-tori in the
BCP for several values of ε [14]. The horizontal axis shows the value of ż of the invariant
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Fig. 29: Continuation of L4 vertical families of invariant 2-tori in the BCP for several
values of ϵ [14]. The horizontal axis shows the value of ż of the invariant curve when
z = 0, and the vertical axis shows the rotation number.

curve when z = 0, and the vertical axis shows the rotation number. In the Sun-Earth-
Moon BCP, i.e., when ε = 1, there are 3 vertical families of invariant 2-tori emanating
off of PO1, PO2, and PO3–these are denoted by F1, F2, and F3. Observe that there is
a broken pitchfork bifurcation between the three families of invariant tori, similar to
the bifurcation of periodic orbits. In fact, one can see from the continuation of these
families in ε that the bifurcation of periodic orbits is the genesis of the relationship
between the families of tori. The relationship between vertical tori, especially the
relationship between PO2/PO3 and PO1, is mirrored in the HR4BP; moreover, while
the bifurcation in DE L4 V has not been computed, preliminary calculations at smaller
values of m suggest there may be a similar link relating the DE L4 V and L4 2:1
V families. The difference in the HR4BP is that the underlying bifurcation is not so
clearly generated by the bifurcation of periodic orbits as in the BCP. This is under
current investigation.
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5.1.3 Powered Transfers to L4

Finally, as we have discussed transport phenomena around L4 and the utility for
spacecraft disposal in cislunar space, we put this work into the context of the limited
related literature. While there are no works considering transfers near the Moon to
L4, there is some work considering transfers from Earth to L4 in the BCP. Hence, a
topic of continued study is to compute transfers between Earth and L4, which could
be used for a communications satellite relaying information between Earth and the
lunar gateway around EM L2.

Tan et al. consider single impulsive transfers from Earth using the window of
easy approach (WOEA) without exploiting invariant manifolds–neither hyperbolic
invariant manifolds nor quasi-periodic invariant tori [16]. While the dynamics in the
Sun-perturbed model allow for the exploitation of natural pathways along stable man-
ifolds of invariant tori around DE L4, Tan et al. fail to take advantage of these natural
structures which can alleviate some of the fuel cost in ∆V .

Conversely, Liang et al. exploit quasi-periodic orbits near L3 as parking orbits
to compute powered transfers from Earth to L4 [17]. In their work, stable manifolds
of several L3 planar invariant tori are computed via backward propagation to find
intersections with parking orbits around the Earth, ranging from low parking orbits to
geostationary orbits. Unstable manifolds of the same L3 planar invariant tori are then
computed to identify intersections with stable regions around L4 at a given epoch. A
codimension argument shows that there are expected to be heteroclinic connections
between 2-tori around L3 and L4, but this is not considered in their work.

6 Conclusions

In this paper we have investigated the motion of a small particle moving near the
Earth-Moon triangular points using as our model the Hill restricted 4-body problem
(HR4BP). The periodic forcing of the Sun changes the L4 equilibrium point into
an isolated π-periodic periodic orbit, called the dynamical equivalent of L4, or “DE
L4”. This perturbation qualitatively changes the linear behavior around the triangular
points from elliptic to partially hyperbolic. Additionally, we show the continuation of
the 2:1 resonant periodic orbit, explicitly computing the bifurcation killing one of the
two branches that continue into the HR4BP. We considered the semi-analytical method
of center manifold reduction, which we found to be extremely limited in utility. Hence,
we computed 5 families of invariant 2-tori using the flow map method around DE L4

and the 2:1 resonant periodic orbit, as well as their stability. A bifurcation relating to
the vertical families of invariant 2-tori was identified. Finally, we investigated transport
phenomena near EM L4 by computing cylinder sets of a particular small planar quasi-
periodic orbit close to DE L4. Using the cylinder sets of a larger amplitude L4 planar
quasi-periodic orbit, we computed single impulsive maneuver transfers from Earth
orbit to L4 via stable manifold injection. We compared results to existing literature
of similar work in the bicircular restricted 4-body problem.
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Aplicada i Análisi, Universitat de Barcelona (1998)
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[28] Jorba, À., Jorba-Cuscó, M., Rosales, J.J.: The vicinity of the Earth–Moon L1

point in the bicircular problem. Celestial Mechanics and Dynamical Astronomy
132(2) (2020) https://doi.org/10.1007/s10569-019-9940-2
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[38] Simó, C.: On the analytical and numerical approximation of invariant manifolds.
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