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2Centre de Recerca Matemàtica (CRM), Campus Bellaterra, 08193 Bellaterra, Spain

January 31, 2025

Keywords: Hopf-zero bifurcation, splitting of separatrices, exponentially small phenomena,
quasi-periodic phenomena

Abstract

The 2-jet normal form of the elliptic volume-preserving Hopf-zero bifurcation provides a
one-parameter family of volume-preserving vector fields with a pair of saddle-foci points
whose 2-dimensional invariant manifolds form a 2-sphere of spiralling heteroclinic orbits.
We study the effect of an external periodic forcing on the splitting of these 2-dimensional
invariant manifolds. The internal frequency (related to the foci and already presented in
the unperturbed system) interacts with an external one (coming from the periodic forcing).
If both frequencies are incommensurable, this interaction leads to quasi-periodicity in the
splitting behaviour, which is exponentially small in (a suitable function of) the unfolding
parameter of the Hopf-zero bifurcation. The corresponding behaviour is described by a
Melnikov function. The changes of dominant harmonics correspond to primary quadratic
tangencies between the invariant manifolds. Combining analytical and numerical results, we
provide a detailed description of the asymptotic behaviour of the splitting under concrete
arithmetic properties of the frequencies.

1 Introduction

In the last years there has been an increasing dynamical interest in three-dimensional (3D) flows
[18, 24, 30]. This was highly motivated by the fact that, in general, that is without having
extra symmetries allowing further dimensional reduction, the velocity vector field of a fluid
defines a 3D flow. Unsteady fluid flows, in which the conditions (the velocity, the pressure and
the cross-section) change over time, lead to time-dependent perturbations of the vector fields.
Volume-preserving rotational symmetry breaking and periodic perturbations of 3D conservative
flows (and/or 3D volume-preserving maps) have been suggested to model periodically time-
dependent velocity fields in incompressible fluid flows and have been studied both theoretically
and experimentally [31, 42, 43]. The role of the separatrix surface in the transport and mixing
properties of the 3D flows has been considered in different related settings and applications, see
[33, 36, 35, 45], for example.
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In this work, we study the effect of a periodic forcing on the splitting of the 2-dimensional sep-
aratrices of the 2-jet of a one-parameter family of 3-dimensional vector fields of the unfolding
of the volume-preserving elliptic Hopf-zero bifurcation. In the scenario we consider, the bifur-
cation gives rise to a pair of saddle-foci equilibria whose 2-dimensional invariant manifolds form
an invariant 2-sphere of spiralling heteroclinic orbits. The 2-jet commutes with the group of
rotations that fix the axis joining these points. Hence, the unperturbed system has a natural
(internal) frequency which, without losing generality, can be assumed to be normalized to one.
The periodic forcing adds a second (external) frequency to the system.

The effect of the periodic forcing creates a splitting between the 2D invariant manifolds of the
saddle-foci equilibria. In the analytic category, such splitting behaves exponentially small in
(a power of) the unfolding parameter ε from the Hopf-zero bifurcation. When the size of the
internal and the external frequencies are comparable, their interaction leads to quasi-periodic
effects in the exponent of the exponentially small in ε asymptotic behaviour of the splitting
of these invariant manifolds. Note that the scenario here considered is of the lowest possible
dimension to have such an interaction of internal and external frequencies.

The paper is organized as follows. In Section 2 we introduce the system and the details of the
perturbation. Some preliminary numerical computations of the 2D invariant manifolds and their
splitting are given in Section 3. Section 4 is devoted to the derivation and analysis of the Mel-
nikov function. The forcing considered resembles that of [20] in a different context but the study
of the Melnikov function properties in Section 4 is simpler for the system here considered. In
particular, we consider the leading terms of the Melnikov function and, in Appendix A, we pro-
vide explicit bounds of the contribution of the remaining terms to the amplitude of the Melnikov
function. Moreover, different scenarios are considered depending on the analytical properties of
the perturbation and we give explicit expressions of the asymptotic behaviour of the amplitude
of the splitting expected in each case. Some numerical explorations of the Melnikov function in
Section 4.3 illustrate different possible behaviours depending on the arithmetic properties of the
interacting frequencies. These results are analytically justified in Section 4.4. Moreover, in Sec-
tion 5 we show that the changes in the homology of the nodal lines of the Melnikov function, due
to changes of its leading harmonics, correspond to quadratic tangencies of saddle type between
the 2-dimensional invariant manifolds of the saddle-foci equilibria. The sequence of parameters
ε for which the family of systems considered show such tangencies accumulate to ε = 0 at a ratio
depending on the arithmetic properties of the system, see Theorem 5.1 for a precise statement.
Finally, Section 6 considers the asymptotic behaviour of some local quantities that measure the
splitting of the 2D invariant manifolds of the saddle-foci points of the system.

2 The vector field model and its relation with the Hopf-zero
bifurcation

We consider a three-dimensional conservative system of differential equations defined by a vector
field X of the form X(x, y, z, t) = X0(x, y, z) + δX1(x, y, z, t), where the perturbation δX1 is a
2π/ω-periodic in time forcing of an autonomous integrable vector field X0. We are interested in
a very specific phase space configuration of the unperturbed system defined by X0. In particular,
we assume that the unperturbed system has a bubble structure. To better describe this structure
let us first introduce the model that we are going to consider and discuss the phenomena that
we want to study.
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The concrete system is given by the vector field

X(x, y, z, t) = X0(x, y, z) + δX1(x, y, z, t), (1)

where

X0(x, y, z) =

(
y − xz, −x− yz, −ε2 + z2 +

1

2
(x2 + y2)

)⊤
, (2)

and

X1(x, y, z, t) =

(
0, 0,

y(x2 + y2)

2(c− y)

g̃(ψ)

d− cos(ψ)

)⊤
, ψ(t) = ωt+ ψ0,

with parameters c, d, ε, δ, ω ∈ R and an initial time phase ψ0 ∈ [0, 2π). To simplify notations,
we omit the dependence of X on those parameters. The function g̃(ψ) is considered to be a
trigonometric polynomial. For concreteness, we mainly consider g̃(ψ) ≡ 1, but we also include
some explorations considering g̃(ψ) = sin(ψ) to stress their differences. Perturbations with other
trigonometric functions g̃ can be similarly handled. Moreover, we restrict to values of c > 2ε
and d > 1 to guarantee that there is ν > 4 so that X is analytic in the cylindrical domain

D = {(x, y, z, ψ) ∈ R4, x2 + y2 < νε2} ⊂ R3 × R/2πZ, (3)

where we study the associated system.

The study we perform depends on both the forcing parameter δ ≥ 0 and the bifurcation param-
eter ε > 0. At the limit ε→ 0, the vector field X0 approaches a bifurcation that causes a change
in the topology of the phase space we are interested in (see details in Section 2.1). Then, our
analytical results for X are perturbative on δ, and provide a description of the exponentially
small phenomena for any sufficiently small fixed value of δ when ε → 0. The range of values
of δ for which our approach provides an accurate description depends on the properties of the
perturbation X1.

The phenomena we are interested in strongly depend on the interaction between the unper-
turbed system X0, which corresponds to δ = 0, and the perturbation X1, mainly through the
arithmetic properties of ω ∈ R \Q. The concrete forms of X0 and X1 are chosen to simplify the
computations and allow visualizations. However, the same phenomena are expected for more
general perturbations if they interact with an unperturbed system with a similar phase space
structure as the system defined by X0. Also, as suggested in Section 6, similar phenomena are
expected for families of near-integrable volume-preserving maps.

2.1 The phase space structure of the unperturbed system

For ε > 0, the unperturbed system X0 has two equilibria p± = (0, 0,±ε) of saddle-foci type,
with stable and unstable invariant manifolds satisfying dimW u(p+) = dimW s(p−) = 1 and
dimW s(p+) = dimW u(p−) = 2, since Spec(DX(p±)) = {±2ε,∓ε+ i ,∓ε− i }.

The 2D invariant manifolds of p± coincide and form an invariant ellipsoid {z2+(x2+y2)/4 = ε2},
which is foliated by the one-parameter family of heteroclinic orbits

γ(t, θ0, ε) = (2ε sech(εt) cos(−t+ θ0), 2ε sech(εt) sin(−t+ θ0), ε tanh(εt))
⊤ , (4)

where θ0 ∈ [0, 2π) is an arbitrary phase. In particular, γ(t, θ0, ε) has singularities at t = (πi +
2πik)/2ε, k ∈ Z.
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Moreover, the unperturbed system X0 admits the integrating factor µ(x, y) = 2(x2 + y2) on
R3 \ {x = y = 0} and then µX0 has

Hε(x, y, z) = (x2 + y2)

(
−ε2 + z2 +

x2 + y2

4

)
, (5)

as a first integral. By continuity, it can be extended to the invariant axis x = y = 0. We shall use
Hε to compute the Melnikov function and measure the splitting of the 2D invariant manifolds,
in Section 4.

Using polar coordinates in the (x, y)-plane the unperturbed system X0 becomes

ṙ = −rz, θ̇ = −1, ż = −ε2 + z2 + r2/2.

Due to the uncoupled structure, we can study the evolution of the (z, r) coordinates indepen-
dently. The unperturbed system possesses a rotational symmetry, with an (internal) rotation
frequency which is equal to −1. It is invariant by elements of the group of rotations eθLz that
keep the z-axis invariant. The first integral

Hε(z, r) = r2
(
−ε2 + z2 +

r2

4

)
, (6)

induces a foliation by constant level sets, which is transversal to the regular foliation that defines
the action of the group of rotations generated by Lz.

In Fig.1 we can observe the main features of the reduced (z, r)-system. It has two saddle-type
fixed points, (±ε, 0), with three different one-dimensional heteroclinic connections. One of these
connections lies on the z-axis, which is invariant by the system. The other two heteroclinic bound
two regions that are foliated by periodic orbits and contain two elliptic fixed points (0,±

√
2ε).

Taking into account the action of the rotation group ⟨Lz⟩, we can conclude that the periodic
orbits observed in the figure are two-dimensional invariant tori of the 3D integrable system X0.
On the other hand, the heteroclinic connections not contained in the invariant z-axis correspond
to 2D heteroclinic connections to the saddle-foci equilibria of X0. The structure that bound the
2D heteroclinic connections, along with the foliation by 2D tori contained within, is usually
referred to as a bubble of stability.

For 3D flows, such a bubble structure is, generically, created at a Hopf-zero bifurcation. There
are six different topological types of Hopf-zero singularities [44]. For a particular topological
type, the Hopf-zero singularity bifurcates into a pair of saddle-foci and, for suitable parameters of
the unfolding, their unstable and stable two-dimensional manifolds form an invariant ellipsoid,
hence a bubble of stability is created. The study of generic codimension two unfoldings of
Hopf-Zero bifurcations started with the works by Guckenheimer and Gavrilov, [22, 21]. A fairly
exhaustive list of references containing additional developments of the Hopf-zero bifurcation is
provided in [2] where the authors considered the same topological type of Hopf-zero singularity
that we are interested in and prove that a generic unfolding has Shilnikov homoclinic orbits.

The unperturbed vector field X0 is obtained as the second-order truncation of the normal form
of the volume-preserving unfolding of the Hopf-Zero singularity at ε = 0. More concretely, for
ε > 0 the unperturbed phase space shows a bubble structure of size O(ε) that collapses to the
origin, which is the unique parabolic equilibrium point of the system X0 for ε = 0 and disappears
for ε < 0.

4



-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Figure 1: Phase space of the reduced 2D (z, r)-system for ε = 1, where three heteroclinic orbits
between saddle equilibria bound two elliptic regions that lead to the 3D stability bubble.

2.2 The perturbed system

We proceed by adding the periodic forcing δX1 to X0 in (2). We express the forcing as

X1(x, y, z, t) =

(
0, 0,

y(x2 + y2)

2
f(y)g(ψ)

)⊤
,

where f(y) = 1/(c − y), g(ψ) = g̃(ψ)/(d − cos(ψ)), and ψ = ωt + ψ0. X1 is a third-order
conservative perturbation that vanishes at p± = (0, 0,±ε) and, independently of the values of
the parameters, preserves the saddle-foci type of the equilibria. On the other hand, the invariant
manifolds remain but do not coincide. Additionally, this perturbation breaks the symmetry of
the normal form, since y(x2 + y2) is not a resonant term.

The 3D vector field X = X0 + δX1 is non-autonomous, and, on the extended phase space
D ⊂ R3 × S1, defined in (3), the system becomes autonomous. The corresponding vector field
X̂ is given by

X̂(x, y, z, ψ) = X̂0(x, y, z) + δX̂1(x, y, z, ψ), (7)

where X̂0(x, y, z) = (X0(x, y, z), ω) and X̂1(x, y, z, ψ) = (X1(x, y, z, t), 0)
⊤. If g̃(ψ) is an even

function, X̂ is reversible. Recall that a vector field Y : M → TM defined on a differentiable
manifold M is reversible with respect to an involution R : M → M if DR(Y (x)) = −Y (R(x)),
for all x ∈M . In particular, the vector field X̂ is R-reversible with

R(x, y, z, ψ) = (−x, y,−z,−ψ).
It follows that R(ϕt(x, y, z, ψ)) = ϕ−t(R(x, y, z, ψ)) where ϕt denotes the flow of X̂.

We aim to study the asymptotic behaviour, as ε → 0, of the splitting of the 2D heteroclinic
invariant manifold that bounds the bubble of X0 when considering δ > 0 small. Even though
in theoretical considerations we are not restricted to these specific values, the computations
reported in this manuscript correspond to the extended system X̂ with

c = 0.5, d = 5 and δ = 10−2,

unless otherwise explicitly specified. The frequency ω is usually assumed to be
√
2 and g̃(ψ) = 1.

Expressing the extended system in the (r, z, θ, ψ) coordinates and rescaling r = r̂ε, z = ẑε and
tε = t̂, one obtains

r̂′ = −r̂ẑ, ẑ′ = −1 + ẑ2 +
r̂2

2

(
1 + δε r̂ sin(θ)f(εr̂ sin(θ))g(ψ)

)
, θ′ = −1

ε
, ψ′ =

ω

ε
, (8)
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where ′ = d/dt̂. We see that, for ω ∈ R \ Q, the system is a fast quasi-periodic perturbation,
in (θ, ψ) ∈ T2 ≃ (R/(2πZ))2, of a planar one. The Fourier expansion of the perturbation has
harmonics of all orders in both θ and ψ.

The decay of the Fourier coefficients function is related to the width of its analytic strip. The
function f(r sin(θ)) is analytic in the complex strip {θ ∈ C,Re(θ) ∈ T, |Im(θ)| < ρθ} given
by ρθ = arcsinh(c/

√
νε), where ν > 4 determines the domain D. On the other hand, g(ψ) is

analytic in the complex strip {ψ ∈ C,Re(ψ) ∈ T, |Im(ψ)| < ρψ} with ρψ = arccosh(d).

Given d > 1, if one considers c > 2ε such that ε/c → 0 as ε → 0, then the function f(r sin(θ))
converges to an entire function as ε→ 0. A perturbation of the form f(y)g(ψ) with f an entire
function was considered in [16]. However, if one considers c depending on ε as c = c(ε) = c̃ε,
then the strip of analyticity of f tends to some constant width as ε → 0. Finally, we also note
that, for g̃(ψ) ≡ 1, g(ψ) is an even function and, in this case, the splitting function differs from
the general case. A perturbation f(y)g(ψ) with f analytic on a finite strip domain and the same
even function g was considered in [20] in a different context. We refer to Section 4 for comments
on the consequences of the different decays of Fourier coefficients in the splitting. The influence
of the parity of g(ψ) will be also discussed.

3 Parameterization of the invariant manifolds, heteroclinic or-
bits and splitting

As already stated, our main interest in this work concerns the splitting of the 2D invariant
manifolds of p±. For the unperturbed system (2), the invariant manifolds W u(p−) and W

s(p+)
coincide (and bound a bubble of stability). However, for δ > 0, the perturbation is expected to
cause the splitting of these invariant manifolds. To understand the splitting of these manifolds
we start by, in this section, investigating it numerically. To this end, we fix δ > 0 small and,
for a sequence of values of ε approaching zero, we numerically compute the invariant manifolds
and measure their splitting on Σ = {z = 0}. Note that Σ is transversal to X̂ near the invariant
manifolds for δ small enough.

To measure the splitting on Σ we first obtain a local representation of the invariant manifolds
and then we propagate them up to Σ by numerical integration of the vector field. As we explain
below, we use the parameterization method to get the local representation of the invariant
manifolds [4, 5, 6, 23] and a Taylor integrator to carry out the propagation step, see for example
[26]. As the splitting behaviour turns out to be exponentially small in ε, the computations need
to be carried out with extended precision. Implementations were done in pari/gp [3], hence
using the gmp library for extended precision arithmetics, to this end.

To compute a local approximation of the 2D invariant manifolds of the fixed points p± we look
for parameterizations Ku,s(s, s, ψ) of the unstable and stable manifolds as embeddings tangent
to the two-dimensional eigenspace generated by the eigenvectors of DX̂(p±) at p±, see [20, 32].
This leads to the so-called invariance equation,

X̂(Ku,s(s, s, ψ), ψ) = Ds,sK
u,s(s, s, ψ)Λ(s, s) +DψK

u,s(s, s, ψ)ω, (9)

where Λ : R2 −→ C2 is the vector field associated to the eigenvectors of DX̂(p±), defined as
Λ(s1, s2) = (µs, µs), where µ = ∓ε + i is an eigenvalue of DX̂(p±) and s = s1 + i s2. The
parameterization Ku,s(s, s, ψ) is a sum of homogeneous polynomials on s and s, where the
coefficients are smooth functions depending on the time variable ψ. But since Ku,s(s, s̄, ψ) =
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Figure 2: A representation of the coordinates introduced is sketched in the left plot. In the
(z, x, y)-projection shown, the torus T u is the circle W u(p−) ∩ Σ. The splitting function Sδ
measures a radial distance, between T u and T s by computing the difference of the Hamiltonian
energy Hε at pairs of points with same coordinates (θ, ψ) ∈ T . This is schematically represented
in the (θ, ψ, r)-projection shown in the right plot.

Ku,s
2 (s, s̄)+O

(
(s+ s̄)3eiψ

)
for all ψ ∈ [0, 2π), we truncate the parameterization to second order

to avoid dealing with Fourier expansions in ψ when solving (9). As a counterpart, Ku,s
2 (s, s̄)

gives an accurate representation of W u,s
loc (p±) just for relatively small |s|. The local tolerance

imposed in (9) and the corresponding maximum value of |s| are adjusted for each value of the
parameter ε to reach Σ with enough accuracy after the propagation step (also the order and
local error of the Taylor time-stepper is adapted to this end).

Denote by ru the maximum value of |s| up to which Ku
2 (s, s̄) gives an accurate representation

of W u
loc(p−). Introducing s = rue

iθ, θ ∈ [0, 2π), we identify W u
loc(p−) ∩ {|s| = ru} with the 2D

torus Tu ⊂ R3 × S1 given by

Tu = {(x, y, z, ψ) ∈ R3 × S1, (x, y, z) = Ku
2 (s, s̄), s = rue

iθ, θ ∈ [0, 2π), ψ ∈ [0, 2π)}.

Let T u be the torus obtained by the propagation of the points of Tu up to Σ under the flow
ϕt of the system (7). See the sketch in Fig. 2 left. It is convenient to introduce coordinates
(r, θ, ψ) in Σ through the relations θ = atan2(y, x), r =

√
x2 + y2 and ψ = ωt (mod2π).

Then, given (θu, ψu) ∈ [0, 2π) × [0, 2π) we get a point pu ∈ Tu that is considered as initial
condition and propagated under the flow ϕt of (7) until reaching Σ. In this way we get a point
pu0 = (θu0 , r

u
0 , ψ

u
0 ) ∈ T u =W u(p−) ∩ Σ, where (θu0 , r

u
0 ) are polar coordinates of (xu0 , y

u
0 ) in z = 0.

By analogy, we denote Ts, T s and ps0 the corresponding definitions related with W s(p+).

Note that for g̃(ψ) = 1, the extended system is R-reversible and R(W u(p−)) =W s(p+), so that
one can compute W u(p−) and apply the reversibility to obtain W s(p+), significantly reducing
the total computational cost. Then, the point R(pu0) is on the 2D torus T s = R(T u). However,
in order to compute the splitting between the invariant manifolds W u(p−) and W

s(p+) on the
Poincaré section Σ = {z = 0} we would like to express both invariant manifolds as a graph over
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Figure 3: For ε = 0.05, we display in the left plot the stable and unstable invariant manifolds
(green and orange respectively) and the continuum of heteroclinic orbits (in blue). In the right
plot, we display the splitting function and the nodal lines, corresponding to the continuum of
heteroclinic orbits.
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Figure 4: We display the nodal lines of Sδ for ε = 0.1. The right plot shows the heteroclinic
orbit (θ0, ψ0) = (3.52, 4.47), shown in orange in the left plot.

angle coordinates (θ0, ψ0), a fundamental torus T , so that we can compute the radial distance
between points sharing the same angle coordinates. See Fig. 2 right. To this end, for the fixed
small value of δ > 0 and a given ε > 0, we select an equispaced mesh of angles (θ0, ψ0) ∈ T and
refine (θu, ψu) (resp. (θs, ψs)), using a Newton method, to guarantee that we reach the point
pu0 ∈ T u (resp. ps0 ∈ T s) with the desired angle coordinates (θ0, ψ0) ∈ T . Then we define the
splitting function to be

Sδ(θ0, ψ0, ε) = Hε(p
u
0)−Hε(p

s
0), (10)

where Hε is the first integral of the unperturbed system X0, defined in (5).

In the left plot of Fig.3 we display W u(p−), in orange, and W s(p+), in green, for ε = 0.05, δ =
0.01 and ω =

√
2. At the scale of the figure, both invariant manifolds are difficult to distinguish,

so in the right plot we display the results of the direct computation (that is, based on the
numerical computation of the local invariant manifolds and their propagation until reaching Σ)
of the splitting function Sδ(θ0, ψ0, ε), as given by (10), to illustrate their difference.

Given ε > 0, each point on the set of nodal lines Sδ(θ0, ψ0, ε) = 0 corresponds to a heteroclinic
orbit between p− and p+. The nodal lines in the plane {z = 0} can be numerically obtained
using a Newton method to compute (θu, ψu) and (θs, ψs) such that pu0 = ps0. The blue curves
shown in Figure 3 left correspond to points where Sδ(θ0, ψ0, ε) = 0, shown in orange in the right
plot. The nodal lines on the fundamental torus at {z = 0} are shown in Fig.4 left. The marked
point on the nodal line is a representant on {z = 0} of the heteroclinic orbit shown in the right
plot.
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Figure 5: Splitting function with respect to (θ0, ψ0) for a fixed δ = 0.01 and ω =
√
2 and

ε = 0.005 and 0.03125.

In Fig.5 we display the splitting function for different values of ε. We see that for smaller values
of ε the splitting function has more oscillations. In the next section, we describe the splitting
function through a first-order Poincaré-Melnikov approximation. The asymptotic behaviour of
the nodal lines will be discussed in Section 5.

4 The Melnikov function: changes in the dominant harmonic

In this section, we derive the first-order Poincaré-Melnikov approximation with respect to the
periodic forcing parameter δ > 0 of the splitting function Sδ(θ0, ψ0, ε) defined in (10). Further-
more, we also show that the dominant terms of this approximation are enough to understand the
asymptotic behaviour of the splitting of the 2D invariant manifolds. Additionally, we illustrate
the role of the analytic properties of the unperturbed separatrix and the perturbation in the
expected size of the splitting when ε → 0. The changes in the dominant harmonic and the
topology of these changes will be analysed in the next section.

Even though the Poincaré-Melnikov approximation has not been theoretically justified to hold in
this context, similar computations in analogous examples support the use of such approximation
in this setting. We refer to [39, 11, 16, 40] for analytical and numerical studies based on the
Poincaré-Melnikov approximation in the context of invariant manifolds of invariant tori in 2-dof
Hamiltonian systems. In particular, comparison with direct computations shows an excellent
agreement as we will also illustrate for the model under consideration here, see also [19]. We
refer to [12, 13, 14] for the more involved setting where the quasi-periodic forcing has three
frequencies.

4.1 Derivation of the Poincaré-Melnikov approximation

The splitting function Sδ(θ0, ψ0, ε) defined in (10) measures the radial distance between two
points pu0 ∈ Σ ∩W u(p−) and p

s
0 ∈ Σ ∩W s(p+) that have the same (θ0, ψ0) coordinates. Those

points depend on the bifurcation parameter ε and the forcing parameter δ, the notation here
emphasizes the dependence on the last one.

Given (θ0, ψ0), let ϕ(t; p
u,s
0 (δ), δ) ∈ R3 be the solution at time t of the non-autonomous system
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X = X0 + δX1 that starts at pu,s0 . Expanding the solution around δ = 0 one obtains

Sδ(θ0, ψ0, ε) = Hε(p
u(δ))−Hε(p

s(δ)) =

= δ

∫ ∞

−∞
DHε(γ(t, θ0, ε))X1(γ(t, θ0, ε), t)dt+O(δ2) = δM(θ0, ψ0, ε) +O(δ2),

where γ(t, θ0, ε) = ϕ(t; pu,s(0), 0) is the corresponding heteroclinic orbit1 of the unperturbed
system X0 defined in (4). Here M(θ0, ψ0, ε) is the so-called Poincaré-Melnikov approximation
and it is given by the Melnikov integral

M(θ0, ψ0, ε) =

∫ ∞

−∞
zγ(t)(x

2
γ(t) + y2γ(t))

2 yγ(t)f(yγ(t))g(ψ)dt,

where (xγ , yγ , zγ) are the components of the heteroclinic orbit γ(t, θ0, ε) and ψ = ωt+ ψ0.

To compute this integral, consider zγ(t)(xγ(t)
2 + yγ(t)

2)2 = 16 ε5 sinh(εt)
cosh(εt)5

and expand the func-

tions yγ(t)f(yγ(t)) and g(ψ). Firstly,

yγ(t)f(yγ(t)) =
yγ(t)

c− yγ(t)
=

∞∑
n=1

2nεn

cn
sin(θ)n

coshn(εt)
=

∞∑
n=1

2εn

cn coshn(εt)

⌊n
2
⌋∑

k=0

an,kfn,k(θ),

where θ = −t+ θ0 and an,k = (−1)⌊
n
2
⌋−k(n

k

)
, for k < n/2, while an,n/2 = 1

2

(
n
n/2

)
. The functions

fn,k(θ) are defined as sin((n− 2k)θ) for odd n and cos((n− 2k)θ) otherwise.

On the other hand, recall that g(ψ) = g̃(ψ)/(d − cos(ψ)). For concreteness we give the details
for g̃(ψ) ≡ 1, but one proceeds similarly for g̃(ψ) = sin(ψ), see Remark (4.1). The Fourier
coefficients of the function g(ψ) =

∑∞
m=0 dm cos(mψ) are given by

d0 =
1√

d2 − 1
, dm =

2d0

(d+
√
d2 − 1)m

, for m ≥ 1.

With these expansions, the Melnikov integral takes the form

M(θ0, ψ0, ε) =
∞∑
m=0

∞∑
n=1

⌊n
2
⌋∑

k=0

dm2
5εn+5an,k
cn

[∫ ∞

−∞

sinh(εt)fn,k(θ) cos(mψ)

coshn+5(εt)
dt

]
.

Using basic identities we express the trigonometric functions that appear in the integral in terms
of sin and cos functions involving σt, where σ = (mω − (n − 2k)), and Φ = (n − 2k)θ0 +mψ0.
In particular, all terms containing cos(σt) will lead to zero integrals since, together with the
hyperbolic term, they are odd functions. Hence, the Melnikov function can be expressed as

M(θ0, ψ0, ε) =
∞∑

m=−∞

∞∑
n=1

⌊n
2
⌋∑

k=0

25ϱ
|m|
d εn+5an,k g(Φ)√

d2 − 1cn

∫ ∞

−∞

sinh(εt) sin(σt)

coshn+5(εt)
dt,

where ϱd = (d+
√
d2 − 1)−1 and g(Φ) is defined as cos(Φ) for odd n and − sin(Φ) for even n.

Let I(σ, p) =
∫∞
−∞

sinh(εt) sin(σt)
coshp(εt) dt. Note that for σ = 0, we have I(0, p) = 0. Otherwise, for p ≥ 1,

one can integrate by parts twice to obtain the following recurrence relation,

I(σ, p+ 2) =
σ2 + ε2(p− 1)2

ε2p(p+ 1)
I(σ, p),

1Recall that for δ = 0 the unperturbed system has a continuous foliation of heteroclinic orbits that can be
parameterized by θ0.
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and use the residue theorem to express the integral I(σ, p) as follows,∫ ∞

−∞

sinh(εt) sin(σt)

coshp(εt)
dt =

πPp−1(σ, ε)

εp(p− 1)!h(σ)
,

where h(σ) = sinh
(
σπ
2ε

)
if p is odd and h(σ) = cosh

(
σπ
2ε

)
if p is even, and Pm(σ, ε) satisfies the

recurrence relation Pm(σ, ε) = (σ2 + ε2(m− 2)2)Pm−2(σ, ε), with initial values P0 = 1, P1 = σ.

Then, as p = n+ 5, the Melnikov function is written as,

M(θ0, ψ0, ε) =
25π√
d2 − 1

∞∑
m=−∞

∞∑
n=1

⌊n
2
⌋∑

k=0

ϱ
|m|
d an,kPn+4(σ, ε)

cn(n+ 4)!
F̂ (Φ, σ),

where F̂ (Φ, σ) = cos(Φ)/ cosh(σπ2ε ) if n is odd and F̂ (Φ, σ) = − sin(Φ)/ sinh(σπ2ε ) if n is even.

Let m2 = m and m1 = n− 2k, so that σ = m2ω −m1 and

M(θ0, ψ0, ε) =
∑
m2∈Z

∑
m1≥0

Ĉm1,m2 T (m1θ0 +m2ψ0), (11)

where T (α) = cos(α) if m1 is odd and T (α) = sin(α) otherwise, and

Ĉm1,m2 = (−1)⌊
m1+3

2
⌋ 25πϱ

|m2|
d√

d2 − 1cm1

∑
i≥0

(m1 + 2i)!

c2i(m1 + 2i+ 4)!(m1 + i)!i!

1

h(σ)
Pm1+2i+4(σ, ε). (12)

with h(σ) = cosh
(
σπ
2ε

)
if m1 is odd and h(σ) = sinh

(
σπ
2ε

)
otherwise.

Remark 4.1. For g(ψ) = sin(ψ), similar computations lead to the following Melnikov function:

M(θ0, ψ0, ε) =
∑
m2∈Z

∑
m1≥0

(−1)m1+1|ϱ|m2+1|
d − ϱ

|m2−1|
d |

2ϱ
|m2|
d

Ĉm1,m2
G(m1θ0 +m2ψ0),

where G(α) = sin(α) if m1 is odd and G(α) = cos(α) otherwise.

We show in Fig.6 that the Poincaré-Melnikov approximation shows a good agreement with the
direct computations of the splitting function, following the methodology described in Section 3.
In particular we see that the difference between the splitting function and the Melnikov approx-
imation is of order δ2.

4.2 Amplitude of the harmonics associated with approximants of ω

Explicit bounds of the relative contribution to the total amplitude of the Melnikov function of
the terms Cm1,m2 such that s = |m2ω −m1| ≤ ε or s ≥ εα with α ≤ 1/2 − η, η > 0, are given
in Appendix A (see Lemma A.3 and A.5). In particular, these terms can be ignored to study
the leading terms of the Melnikov function that give the asymptotic behaviour of its amplitude
when ε→ 0. Concretely,

|M(θ0, ψ0, ε)| ≤ |Mε<s<εα(θ0, ψ0, ε)|+ |Ms≤ε(θ0, ψ0, ε)|+ |Ms≥εα(θ0, ψ0, ε)|
≤ |Mε<s<εα(θ0, ψ0, ε)|+O(exp(−1/ε)) +O(exp(−1/ε1/2+η)).

The leading terms of the Melnikov function are given by pairs (m1,m2) related to linear com-
binations of the frequencies (1, ω) such that s = |m2ω −m1| lies in the strip ε < s < εα. Below
we restrict to (m1,m2) in this s-strip.

11
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Figure 6: The points show the difference between the splitting function (numerically calculated
from the computation of the invariant manifolds) and the Poincaré-Melnikov approximation
(calculated by truncation of expansion (11)) for different values of δ and ε = 0.03125 fixed.
We add for reference a fit of a line with slope equals 2, in agreement with the approximation
Sδ = δM +O(δ2).

For s/ε sufficiently large, we can approximate 1/h(s) by 2 exp
(
− sπ

2ε

)
and so, the amplitude of

the Fourier modes of M(θ0, ψ0, ε) is given by

Cm1,m2 = |Ĉm1,m2 | ≈
26πϱ

|m2|
d√

d2 − 1cm1
exp

(−sπ
2ε

)
SA (13)

where

SA =
∑
i≥0

Ai, and Ai =
(m1 + 2i)!

c2i(m1 + i)!(m1 + 2i+ 4)!i!
Pm1+2i+4(s).

We recall that s = |m2ω−m1|, ϱd = (d+
√
d2 − 1)−1 and Pm(s, ε) = (s2+ε2(m−2)2)Pm−2(s, ε),

with P0 = 1, P1 = s.

The s-strip considered mainly contains some of the (m1,m2)-harmonics related to best approxi-
mants of ω. Other terms related to approximants m1/m2 of ω which are not best approximants
also fall into the s-strip because of the bounds used for the s-width of the region containing the
dominant terms of the Melnikov function. In ranges where one harmonic dominates, the optimal
bound is O(

√
ε log(ε)) when the function f of the perturbation X1 is entire, see details in Sec-

tion 4.4. In Fig. 7 we consider two consecutive best approximants, (41, 29) and (99, 70), and we
display those (m1,m2)-harmonics of the Melnikov function in the s-strip defined by α = 1/2− η
with η = 0.2. We note that the dominant term of the Melnikov function changes from the
(41, 29)-harmonic to the (99, 70) in the range of ε of the figure. Moreover, the other harmonic
terms inside the s-strip not related to best approximants, have a negligible relative contribution
to the total amplitude of the Melnikov function. In particular, the numerical illustrations of
the next section also support this fact. Indeed, rigorous bounds for non-best approximant reso-
nant sequences were obtained in [15] for the golden mean in a slightly different context. Based
on these observations, we restrict from now on to the sequence of best approximants of ω to
analytically describe some properties regarding the asymptotic behaviour of |M(θ0, ψ0, ε)|.
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Figure 7: From left to right, we consider log ε = −10, 10.96 and −12, and we display the
(m1,m2)-harmonics that lie in the s-strip for log ε = −10. The horizontal lines delimit the
s-strip with α = 1/2 − η, η = 0.2. The colour indicates the relative contribution of Cm1,m2

to the total amplitude of the Melnikov function. We observe a change of dominant harmonic
between two consecutive best approximants of ω, (41, 29) and (99, 70), while the largest relative
amplitude of the non-best approximant harmonics, (58, 41) and (82, 58), is O(exp(−311)).

4.3 Arithmetic properties of ω: different asymptotic behaviours

The expression (11) of the Melnikov function allows us to investigate the asymptotic behaviour
of the splitting. As it is well-known, the details of the asymptotic behaviour are related to the
arithmetic properties of ω. This relation was further investigated in [19], below we report similar
computations for the Hopf-zero scenario here considered.

As already said, most of the illustrations are performed for the external frequency ω =
√
2, a

noble number whose continuous fraction expansion (CFE) is given by [1; 2, 2, 2, ...]. The best
approximants of

√
2 are quotients pn/qn, n ≥ 1, where qn is a Pell number and pn is a Pell-

Lucas number. The recurrence q0 = 0, q1 = 1, qn = 2qn−1 + qn−2 give the denominators and
the numerator is obtained as pn = qn + qn−1. Both sequences (pn)n≥1 and (qn)n≥1 grow as δnS ,
being δS = 1 +

√
2 the silver ratio.

In Fig.8 one can see the behaviour of the amplitude of the Melnikov function with respect to ε
for ω =

√
2. If, according to (13), one naively expects such behaviour to be exponentially small

in ε, the corresponding plot reveals a piece-wise structure with apparently different slopes, see
Fig. 8 left. This is related to the fact that, within different ranges of ε, a different combination
of the internal and external frequencies defines a fast angle that, however, evolves much slower
than the θ, ψ angles (which evolve as ∼1/ε). In particular, see [20] for example, for constant type
irrational numbers, the slowest combination of the two angles defines an angle that generally
evolves as ∼ 1/

√
ε, meaning that the splitting is expected to behave exponentially small in√

ε. The corresponding representation in agreement with such behaviour shows the sequence
of bumps related to the different approximants of ω that define the slowest combination of the
angles in each range of ε, see Fig. 8 center.

Note however that in such a figure the bumps are aligned along a curve with a non-zero average
slope. Indeed, a numerical fit by a function of the form a|x|1/2+ b in the range [−36.74,−27.69]
gives a ≈ −1.81564, see Fig. 8 right. This indicates that a term | log ε|1/2 must be included in
the exponent of the asymptotic behaviour. The reason for this extra logarithmic term is related
to the analytic properties of the perturbation: as c is considered to be constant (and equal to
1/2), the width of the analyticity strip of the factor f(y) = 1/(c − y) of the periodic forcing
tends to infinity as ε → 0. See Section 4.4 for an analytical justification of the behaviour of
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Figure 8: We display the behaviour of |M(θ0, ψ0, ε)| with respect to ε and log ε for ω =
√
2 in

different scales. The contribution of the leading harmonic Cm1,m2 is shown in blue. The sum of
all (m1,m2) such that the relative contribution of Cm1,m2 > 10−10 is shown in orange. Moreover,
we display in green the amplitudes Cm1,m2 of the harmonics (m1,m2) such that m1/m2 is a best
approximant of ω.

-14

-12

-10

-8

-6

-4

-2

 0

-25 -20 -15 -10 -5

log ε

√
ε
lo
g
C

m
1
,m

2

-12

-10

-8

-6

-4

-2

-25 -20 -15 -10 -5

log ε

√
ε
lo
g
C

m
1
,m

2

-25

-20

-15

-10

-5

 0

-25 -20 -15 -10 -5

log ε

√
ε
lo
g
C

m
1
,m

2

Figure 9: For δ = 0.01, we consider ω = ω1,10 = [1, 10, 1, 10, ...] (left), ω =
√
e (center) and ω = π

(right). As in Fig. 8, we show |M(θ0, ψ0, ε)| and some of the contributions of terms Cm1,m2 , the
behaviour of the dominant term/s of the Melnikov function in orange and the leading term in
blue. In green (resp. in purple) we display harmonics corresponding to best approximants of ω
that become (resp. never become) the leading harmonic in a range of ε.

Cm1,m2 displayed in Fig. 8.

Other possible behaviours of the amplitude are observed for other frequencies ω ∈ R\Q. In
Fig. 9 we show, from left to right, the results for ω = ω1,10 = [1, 10, 1, 10, ...] ≈ 1.091607978,
ω =

√
e and ω = π. In all cases, one can see that when ε decreases, there are many changes

in the dominant harmonic of the Melnikov function. By a dominant harmonic (or dominant
harmonics) of the amplitude of the series of the Melnikov function we refer to a harmonic
term (resp. a finite sum of harmonic terms) that is of greater order in ε than the sum of the
remaining harmonic terms of the Melnikov function series. Note that the leading harmonic term
(the harmonic term with the largest amplitude) of the Melnikov function series might not be
dominant in the previous sense. In Figs. 8 and 9 the leading harmonic is displayed in blue. In
orange, we display the amplitude of the dominant harmonic/s, computed by adding harmonic
terms up to a relative contribution to the total amplitude of 10−10. As expected, the leading
harmonics are related to the best approximants of the frequency ω. The amplitudes Cm1,m2

of the harmonic term corresponding to (m1,m2) where m1/m2 is a best approximant of ω are
displayed in green if they become dominant within a certain range of ε, and in purple otherwise.
We note that the leading term coincides with the dominant term in large ranges of log ε (and so
the orange line is almost invisible in the plots), but they do not coincide when ε is large and near
the changes of leading harmonic, meaning that at least two harmonics are needed to describe
the dominant behaviour of the splitting amplitude in the small ranges of ε where a change of
the leading harmonic is detected.
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For ω = ω1,10 and ω =
√
e there is a sequence of hidden harmonics, that is, a sequence of

best approximant harmonics that never (for any range of ε) become the leading harmonic of
the Melnikov function (in purple in Fig. 9). Concretely, ω = ω1,10 has a 2-periodic CFE and
one in two consecutive best approximants is hidden. For ω =

√
e one in three consecutive best

approximants harmonics, starting from the 3rd one (3, 2), is hidden. In [19] it was shown that
for any ω ∈ R\Q there are no two consecutive harmonics associated with the best approximants
that are hidden. Hidden harmonics are also observed in Fig. 9 right for ω = π. There is strong
numerical evidence that this is a typical number in a measure theoretical sense and, for such type
of numbers, it was conjectured that the distribution of the hidden best approximant harmonics
in the set of consecutive best approximant harmonics follows a Gaussian distribution law [19].
Note also that no hidden harmonic are observed for ω =

√
2 in Fig. 8. The previous illustrations

indicate that the details of the asymptotic behaviour of the splitting function strongly depends
on the Diophantine properties of ω.

4.4 The amplitude of the leading harmonic

The illustrations in Section 4.3 show that under a quasiperiodic forcing and avoiding the small
ranges of log ε where the leading harmonic changes, the leading harmonic of the Melnikov func-
tion corresponds indeed to the dominant harmonic. This has been proved in similar problems
under suitable hypotheses on the perturbation and under specific arithmetic properties of the
frequencies involved. A direct proof in this setting for concrete frequency ω seems to be a bit
more involved because one of the frequencies involved in the quasi-periodic interaction is already
present in the unperturbed dynamics and, hence, the amplitude of the harmonics are defined
through series expansions, which might be difficult to handle (see comments in Section 4.2) and
Appendix A.

As shown in Section 4.2 and 4.3, a key role is played by the Diophantine properties of ω. Given
m1/m2 an approximant of ω, let cm1,m2 > 0 be the constant such that

s = |m2ω −m1| =
1

cm1,m2m1
. (14)

The constants cm1,m2 are relevant to describe the relative influence of the consecutive best ap-
proximants, and determine if they are dominant in a small range or hidden, see [19, 20]. Below
we are mainly interested in harmonics related to best approximants and, if m1/m2 is the n-th
best approximant of ω, we denote the corresponding constant cm1,m2 by cn. The convergence
properties of the sequence {cn}n≥0 depend on the frequency type considered. Concretely, see
[20] for proofs, the following properties hold:

1. For a quadratic irrational ω, {cn}n≥0 is a periodic sequence with the same period that
exhibits its CFE. In particular, for constant type frequency ω, {cn}n≥0 converges.

2. For ω with unbounded CFE, {cn}n≥0 has a subsequence that diverges to ∞ when n→ ∞.

Note that in Section 4.3 we illustrated the behaviour for different CFE. In particular, we con-
sidered the quadratic irrational frequency ω =

√
2 with constant type CFE, ω = ω1,10 with

periodic CFE, ω =
√
e which has an unbounded CFE (with quotients q3j+1 = 4j − 3 and qi = 1

otherwise), and ω = π whose CFE properties are not known (e.g. is the CFE of π bounded?)
but do not seem to exhibit any regular pattern.

Denote bym1,n/m2,n the n-th best approximant of ω. Assume that the sequence (m1,n/m2,n)n≥0

of best approximants is the union of a finite number of disjoint subsequences with the property
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that, for each subsequence (m1,nk
/m2,nk

)k≥0, there are constants k1, k2 > 0 and a function ϕ
such that

k1ϕ(m1,nk
)/m1,nk

≤ |m2,nk
ω −m1,nk

| ≤ k2ϕ(m1,nk
)/m1,nk

,

for all k ≥ 1. From now on we consider Diophantine frequencies ω that verify the previous
assumption. In particular, this means, that cnk

ϕ(m1,nk
) tends to constant as n tends to ∞.

Starting from the expression (13) for the amplitude of the (m1,m2)-harmonic, we look for s =
s(ε) that describes the behaviour of the leading harmonic. As said, we restrict to those harmonics
corresponding to best approximants of ω. First, we study the contribution of SA =

∑
i≥0Ai

to each term Cm1,m2 . Note that, for ε small enough, limi→∞Ai+1/Ai = 4ε2/c2 < 1 and so
the leading term of SA is A0. To prove that A0 is indeed the dominant term of the sum, we

consider SA = A0

(
1 +

∑
i≥1Ai/A0

)
. Recall that we consider ε < s < εα (the contribution of

the harmonics with s ≤ ε and s ≥ εα is of smaller order in ε, see Appendix A) and sm1 is
bounded from above. Then, there is k̃ ∈ R such that

Ai
Ai−1

≤ 1

c2

[
s

m1
+ ε2(m1 + 4)

]
< k̃εα,

and, provided ε small enough, there exists K̃ such that Ai
Ai−1

< K̃εα < 1 for all i ≥ 1 so that

∑
i≥1

Ai/A0 =
∑
i≥1

Ai
Ai−1

Ai−1

Ai−2
· · · A1

A0
<
∑
i≥1

(K̃εα)i =
K̃εα

1− K̃εα
.

Thus we can approximate the amplitude of the harmonics as

Cm1,m2 ≈ 26π√
d2 − 1

ϱm2
d

cm1(m1 + 4)!
Pm1+4(s, ε) exp

(−sπ
2ε

)
(1 +O(εα)).

Moreover, since the leading harmonic corresponds to s > ε, Lemma A.1 implies that Pm1+4(s, ε) ≤
(s2+ε2(m1+4)2)⌊

m1+4
2

⌋. Using Stirling approximation, if m1 is large enough, one has 1
(m1+4)! ≈√

2πem1+4(m1 + 4)−m1−9/2, and we obtain

Cm1,m2 ≈ 26π√
2π(d2 − 1)

ϱm2
d em1+4

cm1(m1 + 4)m1+9/2
(s2 + ε2(m1 + 4)2)⌊

m1+4
2

⌋ exp

(−sπ
2ε

)
. (15)

The error from Lemma A.1, see Remark A.1, makes ε
s logCm1,m2 to have an error of order

ε3

3ℓ3s6
+ ε

2s log(1 + ε2/(ℓ2s4)) when using the previous approximation.

4.4.1 The amplitude of the leading harmonic for constant type ω

We first consider a constant type frequency ω and let ℓ = limn→∞ cn. Thus, we can approximate
m1 ≈ 1

ℓs , m2 ≈ 1
ωℓs , which means that (15) is approximated as

Cm1,m2 ≈ K
√
ℓs
(
(ℓ2s4 + ε2(1 + 4ℓs)2)1/2ϱ

1/ω
d c−1e

) 1
ℓs
exp

(−sπ
2ε

)
, (16)

for some constant K > 0.
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Given ε > 0, the leading harmonic corresponds to s = s(ε) that gives the maximum value of
Cm1,m2 . Then s = s(ε) is a solution of the equation ℓs2 ∂∂s logCm1,m2 = 0, which reads

ℓs

2
− log

((
ℓ2s4 + ε2(1 + 4ℓs)2

)1/2
ϱ
1/ω
d c−1e

)
+ 2

(
ℓ2s4 + 2ℓsε2(1 + 4ℓs)

ℓ2s4 + ε2(1 + 4ℓs)2

)
= ℓs2

π

2ε
. (17)

Write the lefthand part of the previous equation as L1(s, ε) + 2L2(s, ε) and let η = ℓε2 (ℓ2s4 +
ε2)−1. For s > ε one has

L1(s, ε) =
ℓs

2
− log

((
ℓ2s4 + ε2(1 + 4ℓs)2

)1/2
ϱ
1/ω
d c−1e

)
= −1

2
log(ℓ2s4 + ε2)− log(ρ

1/ω
d c−1e) +O (s, ηs) , (18)

L2(s, ε) =
ℓ2s4 + 2ℓsε2(1 + 4ℓs)

ℓ2s4 + ε2(1 + 4ℓs)2
= 1− ε2

ℓ2s4 + ε2
+O

(
ηs, η2s

)
,

where we made explicit the term that depends on the constants c and d, related to the width of
the analytic strips of the perturbation, in the expansion of L1. If, as we have assumed through
the manuscript, one considers c and d as constants, then such a term in the expansion of L1 is
O(1) and the equation (17) reduces to

ε log(ζ2 + ε2)− πζ +O (ε, ηε) = 0, (19)

where ζ = ℓs2. We look for a solution ζ(ε) = ζ0(ε) + ζ1(ε) where ζ0(ε) is the solution of
equation (19) ignoring the O(ε, ηε)-terms. One has

ζ0(ε) =
2

π
ε| log ε|+O (ε log | log ε|) . (20)

Note that this implies that η = ℓε2(ζ20 (ε) + ε2)−1 ∼ | log ε|−2 ≪ 1 and hence the previously
ignored terms are O(ε). One checks that these ignored terms in equation (19) produce a cor-
rection O(ε) to ζ0(ε), which is smaller than the error in (20), and we conclude that ζ(ε) ≈ ζ0(ε)
and

s(ε) =

√
2ε| log ε|
ℓπ

+O
(
√
ε
log | log ε|√

| log ε|

)
. (21)

Therefore, as one obtains by substituting s(ε) into (16), the expected behaviour of the amplitude
of the Melnikov function is of the form

logCm1,m2 ≈ −
√

2π| log ε|
ℓε

, (22)

in those ranges of ε where the leading harmonic becomes dominant.

We remark that the behaviour (22) is consistent with the exponentially small remainder obtained
after performing the optimal number of steps of averaging to remove the time dependence of the
fast quasiperiodic perturbation in (8), see [39]. As pointed out in [39, 16], the extra logarithmic
term in the exponent appears as a consequence of the factorial decay of the Fourier coefficients,
see Remark 4.2, because f(y) behaves as an entire function as ε→ 0 since ρθ = arcsinh(c/

√
νε).

Note that such factorial decay of the prefactor is compensated with the exponential decay in ε of
the exponential part when solving equation (17). This logarithmic term justifies the behaviour
of the amplitude observed in Fig. 8 for ω =

√
2.

17



Remark 4.2. Let f(z) =
∑

k∈Z cke
ikz be the Fourier series representation of a 2π-periodic function f . If

f is analytic in the strip {z ∈ C, |Imz| < ρ} then a standard application of the Cauchy theorem shows
that |ck| = O(exp(−|k|r)) for 0 < r < ρ. If instead f is entire then one has freedom in choosing the
width of the strip of the domain of analyticity and, in particular, one can choose ρ depending on k before
applying Cauchy theorem. Taking ρ(k) ∼ log(k) then it follows from the Stirling approximation that
|ck| = O(1/k!). Any log-type growth of ρ as a function of k leads to a factorial decay (with different
constants) of the Fourier coefficients of an entire function f .

4.4.2 The amplitude of the leading harmonic for ω with unbounded regular CFE

We consider ω =
√
e. The bounded partial subsequences {cq(n)}n≥0 of {cn}n≥0 converge to

ℓ ≈ 2/
√
e. Then one expects

√
ε| log ε|−1/2 logCm1,m2 ≈ −2.276 as given by (22). On the other

hand, numerical computations of the unbounded subsequence {c3n}n seem to indicate that
ω =

√
e verifies that |qω − p| ≥ Kϕ(q)/q with ϕ(q) = log(log(q))/ log(q) for all p, q ∈ Z \ {0}.

In other words, if m1,n/m2,n denotes the n-th best approximant of ω, then s = |m2,3nω −
m1,3n| ≈ k̃ϕ(m1,3n)/m1,3n. Hence, let ℓ̃ = limn→∞ c3n ϕ(m1,3n) and s ≈ ϕ(m1,3n)/(ℓ̃m1,3n). By
substitution into (15), one obtains

Cm1,m2 ≈
(
ρ
1/ω
d e c−1

)m1

(
(ϕ(m1))

2

ℓ̃2m4
1

+ ε2

)m1
2

exp

(
−ϕ(m1)π

2ℓ̃m1ε

)
,

where m1 = m1,3n, m2 = m2,3n and we have ignored some constants and simplify some terms
that do not affect the exponent of Cm1,m2 . Note that ζ = s/m1 = ϕ(m1)/(ℓ̃m

2
1) verifies the

equation (19) and, hence, ζ ≈ 2
πε| log ε|. This implies

m1 = m1,3n ≈
√
π log | log ε|√
ℓ̃ε| log ε|

(1 + o(1)) ,

and substituting it in the expression of Cm1,m2 above one has

logCm1,m2 ≈ −2

√
π log | log ε|

ℓ̃ ε
(1 + o(1)).

This justifies the observed behaviour of the maxima of the blue curves in Fig. 9 center.

4.4.3 The amplitude of the leading harmonic in the non-entire analytic case

Next, we consider what happens when the analytic function f in the perturbation no longer
behaves as an entire function as ε → 0. To this end, let c = Cε, hence the width of the
strip is ρθ = arcsinh(C/

√
ν). In such a case all the explicit terms (18) are O(1). Ignoring

O(ηs, η2s)-terms, we look for s(ε) = A
√
ε such that is a solution of

−1

2
log(ℓ2s4 + ε2)− log

K0

ε
+ 2− 2

ε2

ℓ2s4 + ε2
=
ℓπs2

2ε
,

where K0 = ρ
1/ω
d C−1e. Introducing z = ℓ2A4 + 1 and denoting K̃0 = 4 − 2 logK0, the last

equation reduces to
πz

√
z − 1 + z log z + 4 = K̃0z,

18
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Figure 10: We display in blue the behaviour of |M(θ0, ψ0, ε)| when ω =
√
2 and c = 5ε. The

approximation of Cm1,m2 defined in (15) is shown in orange so that one can see the asymptotic
behaviour predicted in (23) and the error of using such approximation.

which admits a unique solution z∗ for any K̃0 ≥ 4. This implies that s(ε) = O(
√
ε). Then

the ignored terms in the equation above for z are O(
√
ε) and they do not affect the obtained

estimate of s(ε). Substituting s(ε) = A
√
ε into (16) one obtains

logCm1,m2 ≈ −β√
ε
, where β =

Aπ

2
− 1

Aℓ
log(K0

√
1 + ℓ2A4). (23)

As an example, for ω =
√
2, taking C = 5, d = 5, one has K̃0 ≈ 8.46086, z∗ ≈ 4.7227, A ≈ 0.9822

and β = 2.28313, since ℓ = 2,.

The error of using approximation (15) implies that, instead of the behaviour predicted by (23),
one expects the amplitude of the leading term of the Melnikov function to behave as 2

√
ε logCm1,m2 ≈ −β + arctan

(
1

ℓA2

)
− 1

ℓA2
+O(

√
ε).

This difference is shown in Fig. 10. Note that this error is O(| log ε|−3) when f(y) behaves as
an entire function, hence does not change the behaviour of the amplitude given by (22).

4.5 Rational approximations to ω

Let us comment now on the asymptotic behaviour of the amplitude when one considers ω = ωQ =
p/q ∈ Q. In this case, the periods of the internal and external frequency are commensurable and
the system can be expressed as a periodic perturbation of a planar system. Hence the behaviour
of the splitting function differs from that explained for ω ∈ R \Q. This is indeed a consequence
of the well-known fact that a rational number is badly approximated by other rationals:

Lemma 4.1 ([8, 28]). The distance between ωQ = p/q and any ω̃Q = m/n ∈ Q, both assumed
to be reduced rationals, is bounded from below as |ω̃Q − ωQ| ≥ 1

qn , and the equality holds if there
is k ∈ Z such that m = kp+m0, n = kq + n0 and m0, n0 are such that |pn0 − qm0| = 1.

2For constant type ω and assuming the decay of the Fourier coefficients of the perturbation given by a finite
strip of analyticity, the upper bound in [39] has an extra factor | log ε|−1/2. This is a consequence of the lemma
bounding the contribution of the small divisors, see [38]. However, our results seem to indicate that the splitting
behaviour in this case does not have such a logarithmic term.
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Then, given ωQ = p/q, the set Γ = {(m1,m2) ∈ Z2, pm2 − qm1 = 1} ⊂ Z2 is a one dimensional
sublattice generated by the vector (p, q). For any pair (m1,m2) ∈ Γ one has s = |m2

p
q −m1| = 1

q .
The amplitude of the corresponding (m1,m2)-harmonic of the Fourier expansion of the Melnikov
function is then

Cm1,m2 ∼ exp

(−π
2qε

)
.

Remark 4.3. The behaviour of the amplitude when considering a rational frequency resembles that of an
autonomous perturbation of X0. Autonomous analytic conservative perturbations have been extensively
studied in the literature. In general, the rotational symmetry of X0 is broken due to the perturbation
and then the invariant manifolds show an exponentially small splitting [17]. As a particular example, one
can consider X1 with g(ψ) ≡ 1. This is a regular perturbation for which it was proved in [1] that the
Melnikov function gives the first order of the asymptotic behaviour of the splitting. Thus, computing the
Melnikov function as a simpler version of the one in Section 4.1 one gets

M(θ0, ε) =
∑
m≥1

ĈmT (mθ0),

where T (α) = cos(α) if m is odd and T (α) = sin(α) otherwise. The amplitude of M(θ0, ε) is given by

|Ĉm| = 25π

cm
exp

(−mπ
2ε

)∑
i≥0

(m+ 2i)!

c2i(m+ i)!(m+ 2i+ 4)!i!
Pm+2i+4(m),

where Pp(m) = (m2+ε2(p−2)2)Pp−2(m), P0 = 1, P1 = m. Therefore, considering just the contribution of
the leading harmonic, which is given by m = 1, we conclude that the behaviour of the Melnikov function
becomes exponentially small as ε ↘ 0. The difference to the rational frequency perturbation previously
considered is that, in the last, all pairs (m1,m2) ∈ Γ contribute with the same exponential part to the
amplitude of the splitting.

A situation of particular interest is to consider the rational frequency ωQ = pn/qn to be the
n-th best approximant of an irrational frequency ω. Then, Lemma 4.1 tells us that, for ε
small enough, the leading harmonics (m1,m2) of the Melnikov function of ωQ are (m1,m2) =
(kpn+pn−1, kqn+qn−1), for any k ∈ Z, the amplitude of all of them having the same exponentially
small part in ε. On the other hand, the analytic properties of the perturbation guarantee (at
least, see 4.2) an exponential decay of the prefactor term with respect to the total order of the
harmonics. Consequently, the harmonic (pn−1, qn−1) is expected to give the largest contribution
to the amplitude of the Melnikov function for ωQ corresponding to the n-th best approximant.
In Fig.11 one can see the behaviour of the amplitude of the Melnikov function with respect to
ε for one best approximants ωQ of ω =

√
2. We see that, when ε → 0, the largest contribution

to the amplitude Cm1,m2 corresponds to the best approximant m1/m2 prior to ωQ of ω.

It is also of interest to illustrate the behaviour of the amplitude when perturbing the frequency
from the approximant ωQ of ω. The Fig. 12 left shows this behaviour for some intermediate
frequencies ω̃ = 7/5 + ν between ωQ = 7/5 and ω =

√
2. Concretely, we show the amplitude

for values of ν equal to ν1 = 10−50, ν2 = 10−47, ν3 = 10−18, ν4 = 10−5, ν5 = 6 × 10−3 and
ν6 = 10−2. Note that:

• For any frequency ω̃ with ωQ < ω̃ < ω, the largest contribution to the amplitude of the
splitting when ε→ 0 is no longer given by the (3, 2)-harmonic (as, on the contrary, happens
for ωQ = 7/5 since 3/2 is the best approximant of

√
2 prior to 7/5). In particular, for

the frequencies considered in the plot, there is a range (εj1, ε
j
2) of values of ε for which the

largest contribution to the amplitude is given by the (7, 5)-harmonic itself.
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Figure 11: Behaviour of |M(θ0, ψ0, ε)| when δ = 0.01 and ωQ = 17/12, which is the 4th best
approximant of ω =

√
2. In orange, we display the sum of the amplitude of all the (m1,m2)-

harmonics of the Melnikov function (with |m1|, |m2| ≤ 100). The orange line is almost coincident
with the blue line, which displays the amplitude of the harmonic giving the largest contribution
to |M(θ0, ψ0, ε)|. For reference, in green we display the amplitude of the harmonics of the
Melnikov function for ω =

√
2.

• For ν = ω̃ − ωQ small, the range (ε1, ε2) where the (7, 5)-harmonic gives the largest
contribution to the amplitude of the splitting is located far away to the left in the plot.
Concretely, ε2 → 0 as ν → 0. Accordingly, if ε0 = 2−9 we show in the plot that for ν1 one
has ε12 < ε0, while ε

j
2 > ε0 for all the other values j ≥ 2.

• Given ε0, there is a frequency ω̃0 such that, for any frequency with ω̃0 < ω̃ < ω, the
amplitude of the (m1,m2)-harmonic for ω̃ is larger than the amplitude of the (m1,m2)-
harmonic for ω. In the figure, we show this for ε0 = 2−9: for frequencies ω̃ such that
7/5 + ν4 ≈ ω̃0 < ω̃ < ω , the amplitude of the (7, 5)-harmonic (the leading one) is larger
than the amplitude of the same harmonic for ω =

√
2.

In order to clarify the previous points, we fix ε = ε0 = 2−9 and compute the amplitude Cm1,m2

of the leading harmonic for frequencies of the form ω̃ = 7/5 + ν. The results are displayed in
Fig. 12 right. For this value of ε the leading harmonic of the Melnikov function for ω =

√
2 is

(7, 5), as shown in Fig. 11. The platform observed for log ν ≲ −111 reflects that the leading
harmonic is (3, 2) instead. For larger values of ν the (7, 5) harmonic becomes the leading one
and its contribution to the total amplitude increases linearly in log ν until reaching a maximum
around log ν ≈ −6.65. After the maximum, the contribution of the (7, 5)-harmonic to the total
amplitude decreases and converges to the contribution of such a leading harmonic that it is
observed for ω =

√
2.

5 Non-transversal heteroclinic orbits when ε→ 0

In {z = 0}, the values of (θ0, ψ0) that correspond to heteroclinic orbits can be determined by the
nodal lines of the splitting function. The topology of the nodal lines changes when the dominant
harmonic of the splitting function changes. Such bifurcations are related to quadratic tangencies
between the 2D invariant manifolds, that will be studied in this section. In Fig. 13 we display
two different projections of the invariant manifolds showing one of these bifurcations.
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Figure 12: Amplitude of the leading harmonic of the Melnikov function. Left: The amplitude
as a function of ε for different frequencies of the form ω̃ = 7/5 + νj , j = 1, ..., 6, detailed in
the text. For reference also the amplitude of the leading harmonic for ωQ = 7/5 and ω =

√
2

are displayed. Right: For ε0 = 2−9 we consider frequencies ω̃ = 7/5 + ν and we represent the
amplitude of the leading harmonic as a function of log ν.

Given δ > 0, we consider the splitting function Sδ(θ0, ψ0, ε) = δM(θ0, ψ0, ε)+O(δ2) in (10) and,
for ε > 0, we approximate the set of zeros of the splitting function (the nodal lines) by the set
{(θ0, ψ0) : M(θ0, ψ0, ε) = 0} ⊂ T2. As explained in Section 3, it corresponds to a continuum of
heteroclinic orbits between p− and p+ lying at the intersection of the 2D stable and unstable
invariant manifolds.

Let Mk be the approximation of the Melnikov function obtained as the sum of the k-harmonics
of the largest amplitude among the harmonics that correspond to the best approximants of ω.
Given ε > 0 we write Mk

∼= M if Mk is a dominant approximation of M . Note that the best
approximants involved in Mk might not be consecutive best approximants, as there might be
some hidden harmonics related to the best approximants for specific frequencies ω.

We assume below that there is ε0 > 0 such that, for ε < ε0 the number of dominant harmonics
of the Melnikov function is either one or two. This assumption holds for constant type ω, as we
illustrated for ω =

√
2 in Fig. 8, but it may not hold for other frequency types. For example, for

ω =
√
e, the results in Fig. 14 indicate that at least three dominant harmonics of the Melnikov

function are needed in a range of ε where a change of the leading harmonic takes place and, as
we can see in Fig. 9 left, one of the dominant harmonics is actually hidden.

Let ω ∈ R\Q be a Diophantine frequency and assume that, for any ε0 > 0, there is a numerable
number of intervals of ε < ε0 for which M1 is a dominant approximation of M . Denote by
(m1,m2) the harmonic that defines M1 in one of these interval ranges of ε, that is,

M(θ0, ψ0, ε) ∼=M1(θ0, ψ0, ε) = Ĉm1,m2(ε)T (m1θ0 +m2ψ0),

where T is either a cos or sin function depending on the parity of m1, see (11). Then, the set
{M1 = 0} is the intersection of T2 with the set of parallel lines obtained as vertical translations
of m2ψ0 = −m1θ0 + p0 by j ± π/m2, where j ∈ Z and p0 is either π/2 or 0, depending on the
parity of m1 and g(ψ).

Let m1/m2 and n1/n2 be two consecutive best approximants of ω, and consider an ε-interval
around ε∗, where the change of the leading harmonic takes place and the approximation

M(θ0, ψ0, ε) ∼=M2(θ0, ψ0, ε) = Ĉm1,m2(ε)T1(m1θ0 +m2ψ0) + Ĉn1,n2(ε)T2(n1θ0 + n2ψ0),
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Figure 13: For log ε = −3.79257, log ε∗ = −3.42536, and log ε = −2.99573, we display the (x, y)
and (z, x) projections of the invariant manifolds in {z = 0} and {y = 0}, respectively, for ψ0 = π
(the relative distance in the first row is magnified by a suitable factor).

is dominant. The functions T1 and T2 in M2 are either cos or sin functions depending on
the parity of m1 and n1, see (11). In this range, |Ĉm1,m2(ε)| is monotonically increasing
while |Ĉn1,n2(ε)| is decreasing. Let A be the unimodular matrix of the change α = m1θ0 +
m2ψ0, β = n1θ0 + n2ψ0. Then M̃2 = M2 ◦ A is given by M̃2(α, β) = Ĉm1,m2(ε)T1(α) +
Ĉn1,n2(ε)T2(β). We look for critical saddle points of M̃2 within the level set M̃2 = 0. Since
∇M̃2(α, β) = (Ĉm1,m2(ε)T

′
1(α), Ĉn1,n2(ε)T

′
2(β)), those critical points are (α∗, β∗) where α∗ is a

maximum/minimum of Ĉm1,m2(ε)T1(α) and β∗ is a minimum/maximum of Ĉn1,n2(ε)T2(β). Then
the condition M̃2(α∗, β∗) = 0 requires |Ĉm1,m2(ε)| = |Ĉn1,n2(ε)|, which holds for ε = ε∗. As the
determinant of the Hessian matrix is ±1 the saddle critical points are non-degenerate. This
shows that, for ε∗, where the change of leading harmonic takes place, there are two quadratic
tangencies between the invariant 2D manifolds W u(p−) and W

s(p+).

In Fig. 15 we illustrate the zero level set of M2 for values −3.42505 ≤ log ε ≤ −3.42844. The
leading harmonic changes from (1, 1) to (3, 2) at log ε∗ ≈ −3.42536. Note that, from (12), it

follows that sign(Ĉm1,m2) = (−1)⌊
m1+3

2
⌋ sign(m2ω−m1). Accordingly, one has Ĉ1,1(ε)Ĉ3,2(ε) > 0

and then the two saddle critical points are located at (π, π) and (0, π). In Fig. 16 we display the
difference between the 2D invariant manifolds around the point (θ0, ψ0) = (π, π), corresponding
to a quadratic tangency. On the other hand, at the next change of leading harmonic one has
Ĉ3,2(ε)Ĉ7,5(ε) < 0 and the critical saddle points appear at (0, 0) and (π, 0) instead.

The previous considerations lead to the existence of a sequence of values of ε > 0 for which the
system (1) has quadratic tangencies of saddle type. Let us state a proper result for a general
system of the type considered in this work.

Let UX be the class of analytic systems of the form X = X0 + δX1, where:
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Figure 14: For ω =
√
e and for log ε ≈ −9.1869, where there is a change in the leading har-

monic, we display in purple the approximation M3 of the Melnikov function and, in blue, the
approximation M2. The difference between the curves shows that the third harmonic, although
hidden, must be included in the dominant terms of the Melnikov function.
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Figure 15: For ω =
√
2, in the (θ0, ψ0)-plane we display the set {M2 = 0} for log ε =

−3.42505,−3.42536 and −3.42844.

(A1) X0 is a truncation of the conservative 3D Hopf-zero normal form, depending on the pa-
rameter ε, up to order ≥ 2. In particular, X0 commutes with the generator Lz of the
rotational symmetry group which defines an internal frequency ω1 and, for ε > 0, has an
integrable bubble of stability bounded by the 2D invariant manifolds of the hyperbolic
saddle-foci points. Let θ ∈ [0, 2π) be the turning angle around the symmetry axis that
leaves X0 invariant.

(A2) X1 is a perturbation defined by the product of two functions f and g, such that:

(a) The function f depends on (x, y, z) and has a null 2-jet at the origin. When evaluated
on the unperturbed heteroclinic trajectories of the 2D invariant manifolds of the
saddle-foci, it depends periodically on θ = ω1t+ θ0 ∈ [0, 2π).

(b) The function g is periodic in ψ = ω2t+ ψ0 ∈ [0, 2π).

(c) The ratio ω = ω2/ω1 is Diophantine with bounded CFE.

(A3) The Fourier spectrum is “full” and the decay of the amplitude of the Fourier coefficients
is “generic”. That is
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Figure 16: We display the Melnikov function for ε ≈ ε∗, where there is a change of the dominant
harmonic of the Melnikov function and, at (θ0, ψ0) = (π, π), a quadratic tangency of saddle type
occurs between the 2D invariant manifolds. Accordingly, the graph of the Melnikov function is
locally a hyperbolic paraboloid.

(a) all combinations m1ψ0 +m2θ0 appear in the Fourier expansion of X1 along the un-
perturbed invariant manifold of X0,

(b) and there are ρθ, ρψ > 0 such that the amplitude of the (m1,m2)-Fourier coefficient
decays, at least, as ∼ exp(−m1ρθ −m2ρψ), asymptotically for ε small enough.

The decay of the Fourier coefficients required above includes the possibility of having an entire
function in X1, as is the case of the example considered in this paper. The full spectrum assump-
tion implies that, in particular, trigonometric polynomial perturbations of X0 do not belong to
UX . However, general periodic perturbations of a system X0 having an integrable bubble of
stability, such that it remains as a non-integrable bubble of stability after the perturbation, are
expected to be given by vector fields of UX . The following result applies to the class of systems
UX above.

Theorem 5.1. Consider a system X = X0 + δX1 ∈ UX and δ small enough and fixed. Assume
that the asymptotic behaviour (as ε → 0) of the splitting of the 2D invariant manifolds of the
saddle-foci p± is given by the first order in δ Melnikov approximation M . Moreover, assume
that there exists ε0 > 0 such that M2 is a dominant approximation for all ε < ε0. Then,

1) There is a decreasing sequence {εj}j → 0 of values of ε for whichM2 has two critical saddle
points. In a range of values of ε near εj there are two quadratic heteroclinic tangencies of
saddle type between the 2D invariant manifolds W u(p+) and W

s(p−).

2) If ω = [a0; ā] = [a0; a, a, · · · ], a0 ∈ Q, then εj+1/εj → (ω + a− a0)
2 as j → 0.

Proof. Consider an ε-interval Iε = (εn, εm), with εm < ε0, such that there is ε∗ ∈ Iε where
a change of the leading harmonic, from the harmonic (m1,m2) to the harmonic (n1, n2) (as
ε decreases), takes place. By assumption, the dominant part of the Melnikov function for
ε ∈ (εn, εm) is M2.

Under assumption (A3.b), the Cauchy theorem implies that the negative logarithm of the con-
tribution of a (k1, k2)-harmonic related to the k-th best approximant of ω is given by a quantity
that behaves as k2 + (εk2ck)

−1, where ck = ck1,k2 is the constant in (14). Then, by Theorem 1
in [19], it follows that
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• no two consecutive harmonics related to best approximants can be hidden and,

• if there is a hidden harmonic related to the k-th best approximant of ω, then the next
quotient ak+1 in its CFE is equal to 1.

It follows from the previous assertions that the linear change α = m1θ0+m2ψ0, β = n1θ0+n2ψ0,
is given by a unimodular matrix A either if m1/m2 and n1/n2 are consecutive best approximants
of ω or there is a hidden best approximant in between. To see the previous claim, denote pk/qk
as the k-th best approximant of ω. If m1/m2 and n1/n2 are consecutive best approximants, this
is a well known property of the CFE apparatus, see for example [28]. Otherwise, if the k-th best
approximant is related to a hidden harmonic, that is, if pk+1 = m1, qk+1 = m2, pk−1 = n1 and
qk−1 = n2, then detA = pk+1qk−1 − pk−1qk+1 = ak+1(pkqk−1 − pk−1qk) = ±1 because ak+1 = 1.

Then M̃2 =M2 ◦A can be written as

M̃2(α, β) = Ĉm1,m2(ε)e
iα + Ĉn1,n2(ε)e

iβ,

where Ĉm1,m2(ε), Ĉn1,n2(ε) ∈ C. From (A3.b) and because the change of leading harmonic takes
place for ε ∈ (εn, εm), it follows that Cm1,m2 = |Ĉm1,m2(ε)| is monotonically increasing and
Cn1,n2 = |Ĉn1,n2(ε)| is monotonically decreasing in the range of ε considered. Let θ1, θ2 ∈ [0, 2π)
such that

M̃2(α, β) = Cm1,m2T (α, θ1) + Cn1,n2T (β, θ2),

where T (α, θ) = cos2(θ) cos(α) + sin2(θ) sin(β). Note that |T (α, θ)| ≤ 1, and it has a unique
maximum and minimum, where it reaches the values +1 and −1, respectively. Then M2 has
two critical points of saddle type. If pc is a critical point of M2 of saddle type, the condition
M̃2(pc) = 0 requires Cm1,m2 = Cn1,n2 . Moreover, pc is non-degenerate since the determinant
of the Hessian matrix does not vanish. As ω has bounded CFE, assumption (A3.a) guarantees
that there are infinitely many changes of dominant harmonic as ε→ 0 and the reasoning above
implies the existence of the sequence {εj}j → 0. As M2 is dominant for ε < ε0 and we assume
that the splitting is given by δM , by the implicit function theorem two quadratic tangencies
between the 2D invariant manifolds of the saddle-foci are expected for two values of ε ≈ εj for
each j. This proves 1).

Under the assumptions (A1)-(A3), a direct application of the Cauchy theorem shows that the
contribution Cm1,m2 of the (m1,m2)-harmonic to the Melnikov function M is

Cm1,m2 ∼ exp(−m1ρθ − |m2|ρψ) exp(−sπ/2ε) if both f and g are non-entire analytic,

Cm1,m2 ∼ 1
m1!

exp(−|m2|ρψ) exp(−sπ/2ε) if f is entire and g is non-entire analytic,

Cm1,m2 ∼ 1
m2!

exp(−|m1|ρθ) exp(−sπ/2ε) if f is non-entire analytic and g is entire,

Cm1,m2 ∼ 1
m1!m2!

exp(−sπ/2ε) if both f and g are entire.

Recall that we have considered ω of constant type for assertion 2). Then, as m1/m2 is a best
approximant, there is a constant γ > 0 such that s ∼ γ/m2. The largest contribution to M is
given by m1,m2 ∼ 1/

√
ε, from where one obtains Cm1,m2 ∼ exp(−1/

√
ε) if f, g are both non-

entire analytic, and Cm1,m2 ∼ exp(−
√

| log ε|/ε) otherwise. In particular, there exists a function
F (ε) such that ∥F (ε) logCm1,m2∥∞ tends to a constant as ε→ 0 and, moreover, F (ε) = O(

√
ε)

when both f and g are non-entire analytic functions and F (ε) = O(
√
ε/| log ε|) otherwise.

The assertion 2) is a consequence of the fact that, given j ≥ 1, there is ε̃j ∈ (εj+1, εj) where
the maximum of F̃ (s, ε) = F (ε) logCm1,m2 ≈ −sF (ε)ε−1 is achieved. Then, if log∆j = log εj −
log εj+1 and log ∆̃j = log ε̃j − log ε̃j+1, one has | log∆j − log ∆̃j | → 0 as ε → 0. Hence, it
is enough to measure the distance between consecutive maxima of the function F̃ (s, ε). Let
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sm = |m2ω −m1| ≈ γ/m2 and sn = |n2ω − n1| ≈ γ/n2, where γ is the Diophantine constant.
From F̃ (sm, ε̃j) = F̃ (sm, ∆̃j ε̃j+1) = F̃ (sn, ε̃j+1) one obtains

sm
sn

=
∆̃jF (ε̃j+1)

F (∆̃j ε̃j+1)
,

which leads to ∆j = (sm/sn)
2 if F (ε) = O(

√
ε) and to ∆j = (sm/sn)

2(1 + O(| log ε̃j+1|−1))
if F (ε) = O(

√
ε/| log ε|). On the other hand, if ω = [a0; a, a, . . . ] and m1/m2, n1/n2 are the

consecutive best approximants of ω of order k − 1 and k, then

sm
sn

=
|m2ω −m1|
|n2ω − n1|

≈ n2
m2

= [a; a..., a] → ω + a− a0 as k → +∞,

and we obtain that ∆j = εj+1/εj → (ω + a− a0)
2 asymptotically when j → +∞.

In agreement with to the second statement of Theorem 5.1, for ω =
√
2 = [1; 2̄], we see in Fig. 8

right and in Fig.10 that the asymptotic distance log(εj+1) − log(εj) tends to 2 log(ω + 1) as
ε→ 0.

The previous theorem gives a description of the zero-level curve of the Melnikov function in a
small neighbourhood of the quadratic tangencies of saddle type. In order to explain the evolution
of the level curve for any ε < ε0 we study the variation of the angle of the oriented tangent
direction at the curve. In particular, we are interested in points where the angle changes by ≈ π
since they are related to oscillations in the level curve. Let Iε = (εn, εm), with εm < ε0, and
assume that for ε∗ ∈ Iε there is a change of the leading harmonic. We show below that there
are values εψ0

∗ , εθ0∗ with ε∗ < εψ0
∗ < εθ0∗ < εm such that the angle at εθ0∗ is zero and at εψ0

∗ is π/2,
see Fig. 17.

For ε ∈ Iε, Cm1,m2(ε) is monotonically increasing while Cn1,n2(ε) is decreasing. Therefore, we
can consider ϵ := ϵ(ε) ∈ [0, 1] such that Cm1,m2 = Cϵ and Cn1,n2 = C(1 − ϵ). Note that when
ϵ is either 0 or 1, M1 is a dominant approximation of M with harmonics (n1, n2) and (m1,m2)
respectively. For ϵ = 1/2, the amplitudes of both Fourier harmonics coincide and there is a
quadratic tangency between the invariant manifolds, as shown in the previous theorem.

We consider points (θ∗, ψ∗) ∈ {M2 = 0} such that, for all ϵ, T1(m1θ∗+m2ψ∗) = 0 and T2(n1θ∗+
n2ψ∗) = 0, and so T ′

1(m1θ∗+m2ψ∗) = ±1 and T ′
2(n1θ∗+n2ψ∗) = ±1. The tangent direction can

vary greatly at those points when changing ϵ ∈ [0, 1]. A tangent vector v at (θ∗, ψ∗) is given by
DM2(θ0, ψ0, ε) v = 0. Taking into account the signs of T ′

1, T
′
2 and Ĉm1,m2 , Ĉn1,n2 , one can check

that at those points, the angle of the tangent vector at (θ∗, ψ∗) is either ξ1(ϵ) = atan2(m1ϵ−n1+
n1ϵ,−m2ϵ+n2−n2ϵ) or ξ2(ϵ) = atan2(−m1ϵ−n1+n1ϵ,m2ϵ+n2−n2ϵ). Consequently, as ϵ goes
from 0 to 1, ξ1 monotonically increases/decreases from − arctan(n1/n2) to π − arctan(m1/m2)
and ξ2 monotonically decreases/increases from − arctan(n1/n2) to − arctan(m1/m2). Then, if
ς = sign(Ĉm1,m2Ĉn1,n2), the largest variation of the angle takes place at those points (θ∗, ψ∗)
with T1(m1θ∗+m2ψ∗) = T2(n1θ∗+n2ψ∗) = 0 where ς ̸= sign(T ′

1(m1θ∗+m2ψ∗)T
′
2(n1θ∗+n2ψ∗)).

6 Behaviour of some local quantities related to the splitting of
the 2D invariant manifolds

This last section is devoted to describe the asymptotic behaviour of two local observables, the
splitting Σ-area and the splitting angle. By local observable we refer to quantities that are com-
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Figure 17: For ω =
√
2, we display {M2 = 0} for log ε ≈ −3.4067,−3.3550 and −3.3105, which

correspond to ϵ = 0.55, ϵψ0
∗ = 0.6̄ and ϵθ0∗ = 0.75. For log(ε∗) ≈ −3.42536, or equivalently for

ϵ∗ = 0.5, there is a change of leading harmonic from (m1,m2) = (1, 1) to (n1, n2) = (3, 2), and
one has ς > 0. The marked points are (π/2, 0) and (3π/2, 0).

puted along a concrete heteroclinic orbit. The asymptotic behaviour of these local observables
can be used as a guide to describe the asymptotic behaviour of the splitting of the 2D invariant
manifolds of discrete near-integrable volume-preserving maps (under suitable hypothesis that
leads to similar quasi-periodic phenomena). In particular, from a numerical point of view, local
observables based on local computations at a heteroclinic point (like the splitting angle or the
Lazutkin invariant) can be accurately approximated with moderate computational effort, in con-
trast to those quantities involving more global computations (like the area of homo/heteroclinic
lobes or the splitting/Melnikov function).

As explained in Section 3, the intersection T u/s of the invariant manifolds W u(p−) and W
s(p+)

with Σ = {z = 0} can be expressed as a graph Gu/s over T , such that T u/s = Gu/s(T ).
In particular, given (θ∗, ψ∗) ∈ T such that Sδ(θ∗, ψ∗, ε) = 0, the point p∗ = Gu(θ∗, ψ∗) =
Gs(θ∗, ψ∗) ∈ Σ corresponds to the intersection with Σ of a heteroclinic orbit between p− and p+
of the vector field (1). To measure the splitting of the invariant manifolds W u and W s at the
heteroclinic point p∗ we define the splitting Σ-area and the splitting angle between the invariant
manifolds as suitable (local) observables.

The splitting Σ-area at p∗ ∈ Σ, that we denoted below as A(p∗), is the signed area of the
parallelepiped that form the normalized tangent vectors to the curves T u ∩ {ψ = ψ∗} and
T s ∩ {ψ = ψ∗} at p∗. We recall that the invariant manifolds W u(p−) and W s(p+) intersect
along a continuum of heteroclinic orbits. We refer to [29] for a general description of a similar
situation for 3D volume-preserving maps. The splitting angle α(p∗) is the angle between the two
tangent planes at p∗.

First, we consider the splitting Σ-area. Assume that the invariant manifolds W u(p−) and
W s(p+) intersect transversally along the heteroclinic orbit corresponding to p∗. To compute
A(p∗) it is convenient to introduce coordinates (H, θ0, ψ0) in Σ where (θ0, ψ0) ∈ T and H =
Hε(0, r)−Hε(p

s
0), where Hε(z, r) is defined in (6). Therefore, T s corresponds to {H = 0} while

T u is mapped onto {H = Sδ(θ0, ψ0, ε), (θ0, ψ0) ∈ T }. The heteroclinic point p∗ has coordi-
nates (0, θ∗, ψ∗). Moreover, the tangent space to W s at the point p∗ is mapped onto the linear
subspace generated by the vectors v⊤1 = (0, 1, 0) and v⊤2 = (0, 0, 1)⊤ and, since Sδ(θ0, ψ0, ε) =
δM(θ0, ψ0, ε) +O(δ2), the tangent space to W s at p∗ corresponds to the linear space generated
by u⊤1 = (δ∂θ0M(θ∗, ψ∗, ε) + O(δ2), 1, 0)⊤ and u⊤2 = (δ∂ψ0M(θ∗, ψ∗, ε) + O(δ2), 0, 1)⊤. Then,
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Figure 18: Behaviour of
√
ε log |A(p∗)| for different values of p∗ corresponding to (θ∗, ψ∗) =

(π/2, π) in blue, (θ∗, ψ∗) = (π/2, 0) in purple and (θ∗, ψ∗) = (θ∗(ε), π/2) in green (this is obtained
by continuation, see text for details). We also display in orange the direct numerical computation
of A(p∗) for p∗ = (π/2, π).

assuming ∂θ0M(θ∗, ψ∗, ε) ̸= 0, the vectors v1 and u1 generate {ψ = ψ∗} and

A(p∗) =
1

∥v1∥∥u1∥

∣∣∣∣det(0 δ∂θ0M +O(δ2)
1 1

)∣∣∣∣ = δ
|∂θ0M |√

(δ∂θ0M)2 + 1
+O(δ2),

where ∂θ0M = ∂θ0M(θ∗, ψ∗, ε).

We display in Fig.18 the splitting Σ-area A(p∗) for different values of ε in the heteroclinic orbit
(θ∗, ψ∗) = (π/2, π) (in blue), in (θ∗, ψ∗) = (π/2, 0) (in purple), and in the heteroclinic orbit
obtained by continuation with respect to ε of the heteroclinic orbit with ψ∗ = π/2 fixed and
θ∗ = θ∗(ε) such that θ∗(0.1) ≈ π (in green). In the same figure, we superpose (in orange) the
values obtained from a direct numerical computation of A(p∗) for (θ∗, ψ∗) = (π/2, π), hence
obtained from the propagation of tangent vectors up to Σ to obtain a basis of the tangent spaces
to W u(p−) and to W s(p+) at p∗. We note that the splitting Σ-area have similar quasi-periodic
exponentially small behaviour with respect to ε as the splitting function studied in Section 4.

Note that the splitting Σ-area for the heteroclinic with (θ∗, ψ∗) = (π/2, 0) is zero for some
values of ε, because the slope of the tangent direction to the continuum of heteroclinics at this
point is zero for this value of ε, as explained at the end of Section 5. The tangent slope in this
heteroclinic point is given by the function ξ1(ϵ), see Fig. 17 right.

We now consider the splitting angle α(p∗). This is a natural quantity to measure the splitting
between the invariant manifolds for a discrete map. Note that F = ϕT is the Poincaré map to
the section Σψ∗ = {ψ = ψ∗}. We illustrate in Fig. 19 the splitting angle between the invariant
manifolds at p∗ = (π/2, π).

We observe in the figure that the splitting angle coincides with the Σ-area for some values of ε. In
this heteroclinic, the slope of the tangent to the continuum of heteroclinic orbits in Σ = {z = 0}
is given by the function ξ2(ϵ) and, when changing from one dominant harmonic to the other
one, it crosses −ω. The Poincaré map from Σ to Σψ maps a vector with slope −ω to a vertical
vector in coordinates (θ0, z). Then, at these values of ε, the tangent vector to the continuum of
heteroclinic orbits is normal to {z = 0} in Σψ. This happens at each ε-interval where there is a
change of leading harmonic of the Melnikov function, see Theorem 5.1.
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Figure 19: Behaviour of the splitting angle α(p∗) and the splitting Σ-areaA(p∗) for p∗ = (π/2, π).

7 Conclusions

We have studied a δ-periodic forcing of a 3D conservative vector field that corresponds to a
second-order normal form of the ε-unfolding of a Hopf-zero bifurcation at ε = 0. For δ small
and fixed, we have described the asymptotic behaviour, as ε → 0, of the splitting of the 2D
invariant manifolds of the saddle-foci points that arise at the bifurcation. Assuming δ small
we have given numerical evidence that the splitting of those manifolds behaves exponentially
small in ε. The scenario here considered is of the lowest possible dimension to have such an
interaction of internal and external frequencies. The concrete example studied is general enough
to exhibit the richness of the quasi-periodic phenomena of the splitting while simple enough to
obtain explicit analytic expressions of the leading terms of the Melnikov functions and explicit
bounds of the ignored terms. The role of the interaction of the internal frequency (related to
the rotational symmetry of the integrable system) with the external frequency (coming from the
periodic forcing) in the splitting behaviour has been analysed and illustrated.

We are confident that the (universal) properties of the asymptotic behaviour of the splitting of
the 2D invariant manifolds reported here can be useful to study similar settings. In particular, it
would be interesting to consider a physical fluid model to investigate the change of a bubble shape
due to a periodic forcing, [27], and where the behaviour here described could be observed. On
the other hand, it could be interesting to consider non-perturbative regimes. In this sense, high
order Taylor-Fourier expansions [9, 25, 34] combined with adapted computer assisted techniques
to validate the Melnikov approximation [7] can be useful. Also, a similar behaviour has been
observed for the splitting of the 2D invariant manifolds of discrete near-integrable volume-
preserving maps with similar geometry and under suitable hypotheses and will be reported
elsewhere. Note that the theoretical description of the asymptotic behaviour of the splitting
relies on the proper identification of the frequencies interacting which, for general maps, are
expected to change when changing the parameters of a generic family of maps.

Finally, it is well-known that the splitting of separatrices is a source of complex (chaotic) dynam-
ics around the invariant manifolds. The emerging richness of dynamics in 2D area-preserving
maps has been widely studied, but for 3D (and higher dimensional) maps, a detailed description
of the dynamics within the chaotic zone is still missing. The splitting phenomena discussed here
are genuinely higher-dimensional and may contribute to investigate the main features within
chaotic zones in this setting, such as the location of resonant islands, the size of the chaotic
zone, the bifurcations that take place, etc. The asymptotic behaviour of the Melnikov function
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(which gives the first order of the splitting function) that we provide here is a key ingredient to
derive a suitable separatrix-like return map [10, 37, 41] adapted to this setting.

A Upper bound of the amplitude of a harmonic of the Melnikov
function

The Melnikov function defined in (11) is given by

M(θ0, ψ0, ε) =
∑
m2∈Z

∑
m1≥0

Ĉm1,m2 T (m1θ0 +m2ψ0),

where T (α) = cos(α) if m1 is odd and T (α) = sin(α) otherwise, and

Cm1,m2 = |Ĉm1,m2 | =
25πϱ

|m2|
d√

d2 − 1cm1

∑
i≥0

(m1 + 2i)!

c2i(m1 + 2i+ 4)!(m1 + i)!i!

1

h(s)
Pm1+2i+4(s, ε).

with s = |m2ω −m1|, h(s) = cosh
(
sπ
2ε

)
if m1 is odd and h(s) = sinh

(
sπ
2ε

)
otherwise.

Recall that Pk are defined recursively as P0(s, ε) = 1, P1(s, ε) = s and, for all k ≥ 2, Pk(s, ε) =
(s2 + ε2(k − 2)2)Pk−2(s, ε). Note that |Pk(s, ε)| = Pk(s, ε) verify the same recurrence.

Lemma A.1. • For s ≤ ε one has Pk(s, ε) ≤ (s2 + ε2k2)⌊k/2⌋ exp(−k) exp( sπ2ε ).

• For s > ε one has Pk(s, ε) ≤ (s2 + ε2k2)⌊k/2⌋.

Proof. For k ≥ 2, a straightforward computation gives

logPk(s, ε) = log(s2 + ε2(k − 2)2) + logPk−2(s, ε) =
∑

j=k−2(−2)a

log(s2 + ε2j2)

≤ 1

2

∫ k

a
log(s2 + ε2j2)dj = log s(k − a) +

s

4ε

∫ zmax

zmin

log(1 + z)√
z

dz,

where a = 1 if k is odd and a = 0 otherwise, z = ε2j2/s2, zmin = (aε/s)2 and zmax = (kε/s)2.
Thus, for any k, the direct evaluation of the last integral gives

logPk(s, ε) ≤ ⌊k/2⌋ log(s2 + ε2k2)− k +
s

ε
arctan(kε/s) + C,

where C = 1−arctan(ε/s) s/ε−1/2 log(s2+ε2)+log(s) < 0 if k is odd and C = 0 otherwise.

Remark A.1. The error in the upper bound of logPk for s > ε is the sum of the error E1 ≈ log(1 +
ε2k2/s2)/2 due to the approximation of the sum by the integral, and the error E2 ≈ k3ε2/(3s2) because
the approximation (s/ε) arctan(kε/s) ≈ k.
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A.1 Contribution of the terms with s ≤ ε.

We bound the contribution to |M(θ0, ψ0, ε)| of the terms with s ≤ ε. Note that, as ω > 0, these
terms must have m1 > 0 (as m1 = 0 leads to the contradiction ω < ε) and m2 > 0 (otherwise,
1 ≤ m1 ≤ m1 −m2ω = s ≤ ε is a contradiction). Moreover, we assume that ω > 0 satisfies a
Diophantine condition of the form s = |m2ω −m1| ≥ γ2|m2|−τ with τ ≥ 1 and γ2 > 0.

From the previous lemma, we obtain the following upper bound for the Melnikov function

|M(θ0, ψ0, ε)| ≤
25π√
d2 − 1e4

∑
m2≥1

ϱm2
d

∑
m1≥1

∑
i≥0

(m1 + 2i)!(s2 + ε2(m1 + 2i+ 4)2)(m1+2i+4)/2 S( sπ2ε )
cm1+2iem1+2i(m1 + 2i+ 4)!(m1 + i)!i!

,

where S(x) = ex/ sinh(x) for m1 odd and S(x) = ex/ cosh(x) otherwise.

Lemma A.2. Under the previous assumptions, if 0 < γ1 ≤ γ2ω
τ , one has

(i) s ≥ γ1m
−τ
1 ,

(ii) S( sπ2ε ) ≤ 8
γ1π

εmτ
1.

Proof. To prove (i) it is enough to look for γ1 such that γ2m
−τ
2 ≥ γ1m

−τ
1 or, equivalently,

γ1(m2/m1)
τ ≤ γ2. Since s < ε and m1 ≥ 1 one has

m2

m1
≤
∣∣∣∣m2

m1
− 1

ω

∣∣∣∣+ 1

ω
=

1

ω

(
s

m1
+ 1

)
<

1

ω

(
ε

m1
+ 1

)
<

1

ω
(ε+ 1) <

1

ω
,

then γ1(m2/m1)
τ ≤ γ1/ω

τ , and we see that γ1 ≤ γ2ω
τ guarantees s ≥ γ1m

−τ
1 .

To prove (ii) note that, as the function xS(x) is increasing on x > 0, then xS(x) ≤ (π/2)S(π/2) <
4 for all 0 < x < π/2. Taking x = sπ/(2ε), since s ≥ γ1m

−τ
1 , it follows the bound.

Let ν1 = γ1/ε and ν2 = γ2/ε, it follows from (i) that m1 > ⌊ν1⌋1/τ = ν∗1 and m2 > ⌊ν2⌋1/τ = ν∗2 .

Lemma A.3. Under the previous assumptions, for any ε < ε01 = min( c
24e ,

γ1
(τ+1)τ+1), one has

|Ms≤ε(θ0, ψ0, ε)| ≤
25c(c

√
2π + γ1)

3πe4(1− ϱd)
√
d2 − 1ϱd

γ
4−τ
2τ

1 ε
5τ+4
2τ exp

(
−γ

1/τ
1 (|log (24ε/c)|+ | log ϱd|/ω)

ε1/τ

)
.

Proof. For any ε < ε01 and any i ≥ 0, one has s2+ε2(m1+2i+4)2 ≤ ε2(m1+2i+4)2(1+m−2
1 ) ≤

ε2(m1 + 2i+ 4)2(1 + (ν∗1)
−2) ≤ 2ε2(m1 + 2i+ 4)2, then

|Ms≤ε(θ0, ψ0, ε)| ≤
2113ε5

γ1e4
√
d2 − 1

∑
m2>ν∗2

ϱm2
d

∑
m1>ν∗1

∑
i≥0

A(m1, i),

where

A(m1, i) =
( ε
ce

)m1+2i mτ
1(
√
2(m1 + 2i+ 4))m1+2i

(m1 + i)!i!
.

Let k = m1 + i. We write A(m1, i) = A(m1, k −m1) =
(
ε
ce

)2k 1
k!2

kÃ(m1, k), where

Ã(m1, k) =
( ε
ce

)−m1 mτ
1(2k −m1 + 4)2k−m1

(k −m1)!
.
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Then,

|Ms≤ε(θ0, ψ0, ε)| ≤
2113ε5ϱ

ν∗2
d

γ1e4(1− ϱd)
√
d2 − 1

SK

where

SK =
∑
k>ν∗1

(√
2 ε

c e

)2k
1

k!
SÃ, and SÃ =

k∑
m1=ν∗1

Ã(m1, k). (24)

Our goal is to bound SK by an exponentially small quantity of the form ∼ exp(−C/εν) with
C > 0 and ν ≥ ν0 > 1/2. First, we have

Ã(k, k) =
(ce
ε

)k
kτ (k + 4)k.

On the other hand, SÃ − Ã(k, k) =
∑k−1

m1=ν∗1
Ã(m1, k). Using Stirling’s approximation3 one gets

k−1∑
m1=ν∗1

Ã(m1, k) ≤
ek√
2π

k−1∑
m1=ν∗1

(ε
c

)−m1 mτ
1(2k −m1 + 4)2k−m1

√
k −m1(k −m1)k−m1

≤ ek√
2π

(c
ε

)k−1
(k−1)τ

k−1∑
m1=1

f(m1),

where f(x) = (2k − x + 4)2k−x/(k − x)k−x. This function is bounded by f(x) ≤ f(1) =
(2k + 3)2k−1/(k − 1)k−1 ≤ 4k(k + 4)k, since it is decreasing in [1, k − 1] and k ≥ 2, which holds
for ε ≤ γ1/((τ + 1)τ + 1). Then

k−1∑
m1=ν∗1

Ã(m1, k) ≤
ek√
2π

(c
ε

)k−1
(k − 1)τ+16k(k + 2)k ≤ ε

c
√
2π

(
4ce

ε

)k
(k − 1)τ+1(k + 4)k.

We conclude that

SK ≤
∑
k>ν∗1

(
2ε

ce

)k (k + 4)k

k!

[
kτ +

ε

c
√
2π
kτ+14k

]
.

Using Stirling’s approximation and that (k + 4)/k ≤ 1 + 4/ν∗1 ≤ 3 one gets

SK ≤
√
ε√

2πγ1

∑
k>ν∗1

kτRk1 +
ε

c
√
2π

∑
k>ν∗1

kτ+1Rk2

 ,

where 4R1 = R2 =
24ε
c ≤ e−1 < 1. Next, we use Lemma A.4 below to bound SK by

SK ≤ 2
√
ε√

2πγ1

(
1 +

γ1

c
√
2π

)(
24ε

c

)ν∗1−1

ν∗
T +1

1 ,

where T ∈ Z is the smallest integer number such that τ ≤ T . Therefore, the contribution to
the Melnikov function of the terms with s ≤ ε is bounded by

|Ms≤ε(θ0, ψ0, ε)| ≤
28ε3

√
ε(c

√
2π + γ1)

π
√
γ1 e4(1− ϱd)

√
d2 − 1

ϱ
⌊ γ2

ε ⌋1/τ
d

(
24ε

c

)⌊ γ1
ε ⌋1/τ (γ1

ε

)2/τ
≤ AεB exp

(
−
(γ1
ε

)1/τ
(|log (24ε/c)|+ | log ϱd|/ω)

)
where A = 25c(c

√
2π+γ1)

3πe4(1−ϱd)
√
d2−1ϱd

γ
4−τ
2τ

1 and B = 5τ+4
2τ .

3Stirling’s approximation: 1
n!

≤ exp(−1/(12n+1))√
2πn

(
e
n

)n ≤ 1√
2πn

(
e
n

)n
, for any n ≥ 1.
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Lemma A.4. Let T ∈ Z be the smallest integer number such that τ ≤ T . For any 0 < R ≤ e−1,
one has ∑

k>ν∗1

kτ+1Rk ≤ 2Rν
∗
1−1ν∗

T +2

1 .

Proof. Given ε ≤ γ1/((τ +1)τ +1) and R ≤ e−1, k > ν∗1 implies that k ≥ (τ +1)/| log(R)|. The
function kτ+1Rk is decreasing for k ≥ (τ + 1)/| log(R)| and we can bound∑

k>ν∗1

kτ+1Rk ≤
∫ ∞

ν∗1−1
xτ+1Rxdx ≤

∫ ∞

ν∗1−1
xT +1Rxdx.

Let IT +1 =
∫∞
ν∗1−1 x

T +1Rxdx = (ν∗1 −1)T +1 Rν∗1−1

| log(R)| +
T +1

| log(R)|IT , with I0 = Rν
∗
1−1/| log(R)|. Then,

IT +∞ =
Rν

∗
1−1

| log(R)|

[
(ν∗1 − 1)T +1 + (T + 1)

T∑
i=1

(ν∗1 − 1)i| log(R)|i−T −1

]

≤ Rν
∗
1−1

| log(R)|(ν
∗
1 − 1)T

[
ν∗1 − 1 + T (T + 1)| log(R)|−1

]
.

Remark A.2. Note that for τ = 1, the sum
∑

k>ν∗
1
k2Rk can be directly computed and so the bound of

|Ms≤ε(θ0, ψ0, ε)| can be slightly improved without using the bound of Lemma A.4.

A.2 Contribution of the terms with s ≥ εα, α ≤ 1/2− η, η > 0

We bound the contribution to |M(θ0, ψ0, ε)| of the terms with s ≥ εα, α ≤ 1/2− η, η > 0. For
any s > ε one has Pk(s, ε) ≤ (s2 + ε2k2)⌊k/2⌋ from Lemma A.1 and for s/ε sufficiently large, we
can approximate 1/h(s) by 2 exp

(
− sπ

2ε

)
to provide the upper bound

|Ms>εα(θ0, ψ0, ε)| ≤
26π√
d2 − 1

∑
m2∈Z

ϱ
|m2|
d S(m1, i)

where

S(m1, i) =
∑
m1≥0

∑
i≥0

exp
(
−sπ
2ε

)
Am1,i, and Am1,i =

(m1 + 2i)!(s2 + ε2(m1 + 2i+ 4)2)⌊(m1+2i+4)/2⌋

cm1+2i(m1 + 2i+ 4)!(m1 + i)!i!
.

Lemma A.5. Under the previous assumptions, for any ε < ε02 = min( 1
24
, c
20

√
2e
), one has

|Ms≥εα(θ0, ψ0, ε)| ≤ K exp
(
− π

2ε1/2+η

)
,

for some positive constant K ∈ R and η > 0.

Proof. Let is,m1 = ⌊12
(
s
ε −m1 − 4

)
⌋. The term s2 + ε2(m1 + 2i+ 4)2 is bounded by 2s2 if i ≥ 0

and i ≤ is,m1 , and by 2ε2(m1 + 2i + 4)2 otherwise. Accordingly, we split S(m1, i) = S(m1, i ≤
is,m1) + S(m1, i > is,m1).
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First we deal with the term S(m1, i > is,m1). Note that is,m1 ≤ 0 if s ≤ (m1 + 4)ε. Let
is,m1

min = max(is,m1 + 1, 0) and introduce k = m1 + i. The terms in S(m1, i > is,m1) are those
with k ≥ 1 because, otherwise, s2 ≥ ε2(m1 + 2i+ 4)2 for ε < ε02. Then one has

S(m1, i > is,m1) ≤
27

3
ε4 exp

(
− π

2ε1−α

) ∑
m1≥0

∑
i≥is,m1

min

(√
2ε

c

)m1+2i
(m1 + 2i+ 4)m1+2i

(m1 + i)!i!

≤ 27

3
ε4 exp

(
− π

2ε1−α

)∑
k≥1

(√
2ε

c

)2k
1

k!

k∑
m1=0

(√
2ε

c

)−m1
(2k −m1 + 4)2k−m1

(k −m1)!

Note the similarity with SK in (24): if one replaces mτ
1 by 1 they only differ in the ranges of

m1 and k. Indeed, performing the analogous estimates in this simpler case one obtains that, for
ε < ε02, there is a constant K1 ≥ 0 such that,

S(m1, i > is,m1

min ) ≤ K1 exp
(
− π

2ε1−α

)
.

Next we consider the case S(m1, i ≤ is,m1). We write S(m1, i ≤ is,m1) = Sα(m1, i ≤ is,m1) +∑
j≥1 Sj(m1, i ≤ is,m1), where Sα = Sα(m1, i ≤ is,m1) (resp. Sj = Sj(m1, i ≤ is,m1)) denotes

the terms with εα ≤ s < 1 (resp. with j ≤ s < j + 1). Let Υj =
√
2c−1(j + 1). Using that

(m1 + i)! ≥ m1!i! it follows that

Sj ≤
(j + 1)4

6
exp

(
−jπ
2ε

) ∑
m1≥0

(Υj)
m1

m1!

∑
i≥0

(
(Υj)

i

i!

)2

=
(j + 1)4

6
exp

(
−jπ
2ε

+Υj

)
I0(2Υj),

(25)

where I0 is the modified Bessel function of the first kind. Since I0(x) ≤ exp(x) for all x ≥ 0,
then

Sj ≤
(j + 1)4

6
exp

(
−jπ
2ε

+ 3Υj

)
≤ C1 exp

(
−C2

j

ε

)
.

where C1 = exp(3
√
2c−1)/6 and C2 = π/2− (3

√
2c−1 + 4)ε. Then, taking ε small enough∑

j≥1

Sj ≤ 2C1 exp(−C2/ε).

Finally, the analogous to (25) for Sα implies

Sα ≤ 1

6
exp

(
− π

2ε1−α

) ∑
m1≥0

(
√
2c−1)m1

m1!

∑
i≥0

(
(
√
2c−1)i

i!

)2

≤ C1

6
exp

(
− π

2ε1−α

)
.

We conclude that, for α ≤ 1/2− η with η > 0, there is a constant K2 ≥ 0 such that

S(m1, i ≤ is,m1) ≤ K2 exp
(
− π

2ε1/2+η

)
.

Therefore, the contribution to the Melnikov function of the terms with s ≥ εα is bounded by

|Ms≥εα(θ0, ψ0, ε)| ≤
26π(ϱd + 1)√
d2 − 1(1− ϱd)

(K1 +K2) exp
(
− π

2ε1/2+η

)
.
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